
Extracting Xor-Encoded Files From Malware With IDAPython

I. Problem statement:

This specimen contains a 144424 byte .data section, 99.994% of which is left unexplored by
IDA. Without using a debugger or otherwise running the code, how can one determine the
purpose of these bytes and turn it into something useful.

II. Research:

A few steps into the start of the code, there exists the following function that copies 5
offsets into some variables, all of which point into the unexplored .data section.

.text:00401000 sub_401000 proc near ; CODE XREF: _func+4Ap
.text:00401000 mov lpBuffer, offset byte_403008
.text:0040100A mov dword_4263F0, offset unk_403C08
.text:00401014 mov dword_4263F4, offset unk_404008
.text:0040101E mov dword_4263F8, offset unk_416608
.text:00401028 mov dword_4263FC, offset unk_416648
.text:00401032 retn
.text:00401032 sub_401000 endp

Shortly thereafter, there is a call to the following function, once for each variable. The
parameters are the offsets created above and a dword pointer, which turns out to be the size
in bytes of the xor-encoded file.

.text:00401033 ; ¦¦¦¦ S U B R O U T I N E ¦¦¦¦

.text:00401033

.text:00401033

.text:00401033 xor proc near ; CODE XREF: _func+6Cp

.text:00401033

.text:00401033 arg_0 = dword ptr 4

.text:00401033 arg_4 = dword ptr 8

.text:00401033

.text:00401033 xor ecx, ecx

.text:00401035 cmp [esp+arg_4], ecx

.text:00401039 jle short loc_40104B

.text:0040103B

.text:0040103B loc_40103B: ; CODE XREF: xor+16j

.text:0040103B mov eax, [esp+arg_0]

.text:0040103F add eax, ecx

.text:00401041 xor byte ptr [eax], 22h

.text:00401044 inc ecx

.text:00401045 cmp ecx, [esp+arg_4]

.text:00401049 jl short loc_40103B

.text:0040104B

.text:0040104B loc_40104B: ; CODE XREF: xor+6j

.text:0040104B xor eax, eax

.text:0040104D retn

.text:0040104D xor endp

III. Solution

This is really all the information needed to begin extracting the xor-encoded files from this
piece of malware. Since the recent Word 0-day also had really simple xor-encoded files
embedded (using 0xFF), it would be nice to produce something re-usable. The following
IDAPython script has a DoGeneric() function to accept user input for output file name,
start address, size, and xor key. The DoSpecific() function exists to automatically extract the
5 files from this particular specimen.

extract (embedded) xor-encoded files from malware

import struct

def DoExtract(fn,addr,size,key):
 out=file(fn,'wb')
 for i in range(size-1):
 data=struct.pack('h',get_byte(addr+i)^key)
 if i>0:
 out.seek(-1,1)
 out.write(data)
 out.close()

def DoGeneric():
 fn=AskFile(1,"c:\output.exe","Enter output file: ")
 ea=askaddr(get_screen_ea(),"Enter start address: ")
 size=asklong(0xC00,"Enter length: ")
 key=asklong(0x22,"Enter xor key: ")
 if fn==None or ea==None or size==None or size==0:
 print "Error!\n"
 else:

 DoExtract(fn,ea,size,key)
 exit(0)

def DoSpecific():
 DoExtract("c:\\files\\1.out",0x00403008,0xC00,0x22)
 DoExtract("c:\\files\\2.out",0x00403C08,0x400,0x22)
 DoExtract("c:\\files\\3.out",0x00404008,0x12600,0x22)
 DoExtract("c:\\files\\4.out",0x00416608,0x40,0x22)
 DoExtract("c:\\files\\5.out",0x00416648,0xFC00,0x22)

#DoGeneric()
DoSpecific()

IV. Conclusion

The files can now be retrieved from disk and examined individually, without having to run
the code. This is good because during execution of the program, it will extract, run, and
immediately delete two of the files.

V. Caveats

Python’s write() method is string-based, creating the need to use struct.pack() to output
binary data. Even then, each byte is accommodated with a NUL when the write occurs. For
the script to work properly, it must do a check and use seek() to overwrite the previous
write’s NUL before writing the next byte. This works fine, but can be a lot cleaner.

VI. Resources

IDA http://www.datarescue.com
IDAPython http://d-dome.net/idapython

http://www.datarescue.com/
http://d-dome.net/idapython

