
Several samples of the Torpig/Anserin/Sinowal family of Trojans detect virtual machine
monitors and abort infection when present. This technique involving the interrupt descriptor
table location has been discussed in many articles, including one of my own called Using
IDT for VMM Detection. Please read this before moving on, as information required for
understanding where the following code came from is in that document and will not be
repeated here.

The samples of this malware that we have gathered in the past are typically packed with
UPX. Below is a hex-view/disassembly combination of the instructions issued by these
Trojans to detect the VMM. This code is only available (in this form) after unpacking the
original file.

call codebegin
test eax,eax
jnz vmdetected
...
getsidt:
 51 // push ecx
 51 // push ecx
 0F 01 4C 24 00 // sidt qword [esp]
 8B 44 24 02 // mov eax,dword ptr [esp+2]
 59 // pop ecx
 59 // pop ecx
 C3 // retn
codebegin:
 E8 ED FF FF FF // call getsidt
 25 00 00 00 FF // xor eax,0x0FF000000
 33 C9 // xor ecx,ecx
 3D 00 00 00 80 // cmp eax,0x80000000
 0F 95 C1 // setnz cl
 8B C1 // mov eax,eax
 C3 // retn

This string of bytes can be used as an IDS signature for detecting un-packed versions of
the Torpig/Anserin/Sinowal Trojans.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"BLEEDING-EDGE VMM
Detecting Torpig/Anserin/Sinowal Trojan"; flow:to_client,established;
content:"|51 51 0F 01 4C 24 00 8B 44 24 02 59 59 C3 E8 ED FF FF FF 25
00 00 00 FF 33 C9 3D 00 00 00 80 0F 95 C1 8B C1 C3|"; classtype:trojan-
activity; sid:20060810; rev:1;)

Unfortunately, the malware probably won’t ever be seen in un-packed form in the wild, so
this rule is of limited value. To generate something a little more useful, a signature needs to
be created based on the bytes in the packed file that correspond to the ones shown above.
Lucky for us, UPX is natively reversible and quite simple to trace.

When the packed file begins execution, it does the following:

http://www.mnin.org/?page=vmmdetect&left=off
http://www.mnin.org/?page=vmmdetect&left=off

UPX1:00428B80 start proc near
UPX1:00428B80
UPX1:00428B80 var_AC = byte ptr -0ACh
UPX1:00428B80
UPX1:00428B80 pusha
UPX1:00428B81 mov esi, offset dword_417000
UPX1:00428B86 lea edi, [esi-16000h]

This loads the address to the start of the UPX1 section into esi, which is where the packed
bytes reside. Then it loads the address to the start of the UPX0 section into edi, which is
where the unpacked bytes will be written. After all the replacement has been completed, the
code jumps to a location within the new UPX0 section and proceeds with normal execution
of the program.

UPX1:00428D0B jmp near ptr dword_401628
UPX1:00428D0B start endp

So in order to find out the original values of the bytes that compose the IDT functions, first
the exact locations where overwrites occur were marked in IDA. There are only three
possible places, two of which move a byte from al and one that moves a dword from eax:

The last required piece of information is the address where the IDT function(s) begin in the
unpacked file. As shown in the disassembly below, this would be 0x0040166A.

.text:0040166A ; ¦¦¦¦ S U B R O U T I N E ¦¦¦¦
.text:0040166A
.text:0040166A
.text:0040166A sub_40166A proc near ; CODE XREF: sub_401678p
.text:0040166A
.text:0040166A var_8 = qword ptr -8
.text:0040166A
.text:0040166A push ecx
.text:0040166B push ecx
.text:0040166C sidt [esp+8+var_8]
.text:00401671 mov eax, dword ptr [esp+8+var_8+2]
.text:00401675 pop ecx
.text:00401676 pop ecx
.text:00401677 retn
.text:00401677 sub_40166A endp
.text:00401677
.text:00401678
.text:00401678 ; ¦¦¦¦ S U B R O U T I N E ¦¦¦¦
.text:00401678
.text:00401678
.text:00401678 sub_401678 proc near ; CODE XREF: _func+11p
.text:00401678 call sub_40166A
.text:0040167D and eax, 0FF000000h
.text:00401682 xor ecx, ecx
.text:00401684 cmp eax, 80000000h
.text:00401689 setnz cl
.text:0040168C mov eax, ecx
.text:0040168E retn
.text:0040168E sub_401678 endp

Now the program can be executed until this start address is in edi, and we can take the byte
pointed to by esi-1 (its incremented before overwriting) as the start of the packed signature.
Once the retn instruction at 0x0040168E is written, the byte pointed to by esi-1 again will be
the end of the signature.

This allows for creation of the following IDS signature based on the packed version of the
file:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"BLEEDING-EDGE (UPX)
VMM Detecting Torpig/Anserin/Sinowal Trojan";
flow:to_client,established; content:"|51 51 0F 01 27 00 C1 FB B5 D5 35
02 E2 C3 D1 66 25 32 BD 83 7F B7 4E 3D 06 80 0F 95 C1 8B C1 C3|";
classtype:trojan-activity; sid:20060810; rev:1;)

Caveats and results of signature QA testing

There are countless variations of the VMM detecting code, so bypassing the rules are trivial.
For example, the malware author could use different registers or insert trash instructions to
break the contiguity of the signature bytes. Alas, the proposed signatures are good for
detecting the samples found in the wild across a period of several months. For QA testing,
the signatures were tested against the original packed file, an unpacked version of the file,
and a version of the file after having re-packed it with UPX. Since the main executable is

essentially a dropper, the signatures were also tested successfully against two of the
executables that are extracted from its .data section during runtime, both of which detect the
presence of VMMs in the same manner.

Anti-virus vendors refer to the code by several different names:

ANTIVIR 7.1.1.16/20060909 FOUND [TR/PSW.SINOWAL.AQ.30]
AVAST 4.7.844.0/20060908 FOUND [WIN32:TROJANO-P]
AVG 386/20060908 FOUND [PSW.GENERIC2.GEU]
BITDEFENDER 7.2/20060910 FOUND [TROJAN.PWS.SINOWAL.AK]
DRWEB 4.33/20060910 FOUND [TROJAN.PWS.SNAP]
ETRUST-VET 30.3.3070/20060909 FOUND [WIN32/ANSERIN!GENERIC]
EWIDO 4.0/20060910 FOUND [TROJAN.SINOWAL.AQ]
FORTINET 2.77.0.0/20060909 FOUND [W32/TORPIG.AQ!TR.PWS]
KASPERSKY 4.0.2.24/20060910 FOUND [TROJAN-PSW.WIN32.SINOWAL.AQ]
MICROSOFT 1.1560/20060909 FOUND [PWS:WIN32/SINOWAL!FEE9]
NOD32V2 1.1746/20060908 FOUND [A VARIANT OF WIN32/PSW.SINOWAL]
NORMAN 5.90.23/20060908 FOUND [W32/SINOWAL.TH]
PANDA 9.0.0.4/20060909 FOUND [SUSPICIOUS FILE]
SOPHOS 4.09.0/20060910 FOUND [TROJ/TORPIG-BH]
VBA32 3.11.1/20060910 FOUND [TROJAN-PSW.WIN32.SINOWAL.AQ]
VIRUSBUSTER 4.3.7:9/20060910 FOUND [TROJAN.DR.SINOWAL.GEN.8]

